
ARFA
An Agile Regime-Based Floating-Point Optimization Approach

for Rounding Errors

Jinchen Xu 1, Mengqi Cui 1, Fei Li 1, Zuoyan Zhang 2,

Hongru Yang 1, Bei Zhou 1, Jie Zhao 2

1 Information Engineering University, Zhengzhou, China
2 Hunan University, Changsha, China

MOTIVATION APPROACH

EVALUATION CONCLUSION

2

Outline

• Error optimization of ARFA

• How ARFA works?

• Precision optimization effect
• Validation interval inference

• Summary
• Future work

• Rounding errors
• Existing approaches and difficulties
• Regime-based rewriting of ARFA

• Some inputs may trigger significant floating-point errors
• Consider:

𝑓 𝑥 =
tan 𝑥 − sin(𝑥)

𝑥3
lim
𝑥→0

𝑓 𝑥 = 0.5

double f(double x) {
double num = tan(x) – sin(x);
double den = x * x * x;
return num / den;

}

>>> f(1e-7) // 64 bits result
0.5029258124322410

Accurate result //128 bits result
0.5000000000000012

Rounding errors

3

Rounding errors

4

• The root cause is:

• And the rounding errors can be amplified by floating-point
operations

• Large errors may lead to catastrophic software failures

➢ Missile yaw [skeel’ 92]
➢ Stock trading disorder [Quinn’ 83]
➢ Rocket launch failure [Lions’ 96]

Finite precision bits cannot represent all real numbers exactly

Precision optimization is a crucial work

How to solve it?

5

Through rewriting
• Changing the order of floating-point operations can reduce errors

Consider: for an expression
𝑙𝑜𝑔(1−𝑥)

𝑙𝑜𝑔(1+𝑥)
 in interval [0.1,0.9]

𝑙𝑜𝑔(1 − 𝑥)

𝑙𝑜𝑔(1 + 𝑥)

𝑙𝑜𝑔1𝑝(−𝑥)

𝑙𝑜𝑔1𝑝(𝑥)

𝑙𝑜𝑔1𝑝(𝑥 ∗ −𝑥)

𝑙𝑜𝑔1𝑝(𝑥)
− 1

double a = 1.0e8, b = -1.0e8, c = 0.1;
printf(“%.10lf”, (a + b) + c); // 0.1000000000
printf(“%.10lf”, a + (b + c)); // 0.0999999940

Equivalent rewriting

Approximate rewriting
double x = 0.1e-6;
printf(“%.10lf”, (1-cos(x)) / (x * x)); // 0.4996003611
printf(“%.10lf”, 1.0 / 2.0 – (x * x) / 24.0 + (x * x * x * x) / 720.0); // 0.5000000000

How to solve it?

6

𝑙𝑜𝑔(1 − 𝑥)

𝑙𝑜𝑔(1 + 𝑥)

𝑙𝑜𝑔1𝑝(−𝑥)

𝑙𝑜𝑔1𝑝(𝑥)

𝑙𝑜𝑔1𝑝(𝑥 ∗ −𝑥)

𝑙𝑜𝑔1𝑝(𝑥)
− 1

What to do next?

How to solve it?

7

We can divide the high error interval and use rewriting to optimize its precision

High error interval
𝒍𝒐𝒈𝟏𝒑(𝒙 ∗ −𝒙)

𝒍𝒐𝒈𝟏𝒑(𝒙)
− 𝟏. 𝟎

𝒍𝒐𝒈𝟏𝒑(−𝟏)

𝒍𝒐𝒈𝟏𝒑(𝒙)

Two problems:
• How to determine the rewriting interval?
• How to rewriting?

Regime-based
rewriting 𝒍𝒐𝒈(𝟏 − 𝒙)

𝒍𝒐𝒈(𝟏 + 𝒙)

Before precision optimization After precision optimization

Existing approaches and difficulties

8

Regime-based rewriting is the main method of
precision optimization

• Cannot find the regime in
many cases

• It’s difficult to search for
the optimal rewriting

• The number of regimes are
often much larger

• Low performance

Herbie Regina

A generally applicable and effective regime inference algorithm and
optimal rewriting search algorithm are still missing

Regime-based rewriting of ARFA

9

In order to solve the two problems

How to determine regimes more accurately?

How to generate better rewriting expressions?

• Get a startup expression with the lowest possible error
• Determine the high error regime based on the error distribution contour

• Rewriting based on the order of operations
• Supporting customization and extension of rewriting rules
• Dynamically detect rewriting expressions instead of cost model

Error optimization using ARFA

10

error
analysis

preprocessing

plotting

sketching

splitting

search

normalization simplification

expansion

code

optimizer

𝑓𝑒, 𝒟

෡𝑓𝑒, 𝒟

grain

Architecture of ARFA

Error optimization using ARFA

error
analysis

preprocessing

plotting

sketching

splitting

search

normalization simplification

expansion

code

optimizer

𝑓𝑒, 𝒟

෡𝑓𝑒, 𝒟

11

Error analysis
• Use MPFR to obtain dynamic

errors

Preprocessing
• Choose a better start-up expression by comparing the

original with Herbie and Daisy’s rewriting expression

Error optimization using ARFA

12

plotting

sketching

splitting

Effective regime inference

Through plotting error distribution, sketching boundary lines, and dynamically set
the boundary line to obtain a more accurate regime

Error optimization using ARFA

13

search

normalization simplification

expansion

code

optimizer

෡𝑓𝑒, 𝒟

Customized rewrite generation

Building an incomplete e-graph to obtain a optimal rewriting expression in every
regime instead of using cost model

1

𝑥 + 𝑦
+

1

𝑥 − 𝑦
+ 1 ⇒

𝑥 − 𝑦 + 𝑥 + 𝑦 + (𝑥 + 𝑦)(𝑥 − 𝑦)

(𝑥 + 𝑦)(𝑥 − 𝑦)

𝑥 − 𝑦 + 𝑥 + 𝑦 + 𝑥 + 𝑦 𝑥 − 𝑦 ⇒ 2𝑥 + 𝑥2 − 𝑦2

1 + 3𝑥 + 3𝑥2 + 𝑥3 ⇒ 1+ (3𝑥 + 3𝑥2 + 𝑥3)

𝑙𝑜𝑔 1 + 𝑥 ⇒ 𝑙𝑜𝑔1𝑝(𝑥)

Normalization

Simplification

Reordering

Extended rules

ARFA supports normalization, simplification, reordering and extended rules to
generate equivalent rewriting expressions

Evaluation

Benchmarks: total 60 expressions
• 56 expressions are from FPBench
• 4 expressions are from real-life numerical programs

𝒟 is set using large but reasonable ranges

Total
Benchmarks

Single-variate Multi-variate Control flow Real-life

60 31 19 6 4

14

Evaluation — Precision optimization effect

15

ARFA performs better than Herbie and NumOpt in 60 and 52 cases respectively

Evaluation — Quality of rewriting

16

Arfa allows its regime inference to work with Herbie rewrite search heuristics

ARFA’s rewriting performs better than Herbie+ and Herbie𝜶 in 58 and 53
cases respectively in the same regime

Conclusion

https://github.com/yuanyuanxia/exprAuto

ARFA

• Effective regime

inference

• Optimal rewriting

generation

• Generalize Arfa

• Add more rewrite rules

• Integrate the RLIBM-

based approaches

17

Summary Future work

https://github.com/yuanyuanxia/exprAuto

THANK YOU FOR LISTENING

zyanz@hnu.edu.cn

Presenter: Zuoyan Zhang

ANY QUESTION?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

