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• Some inputs may trigger significant floating-point errors
• Consider: 

𝑓 𝑥 =
tan 𝑥 − sin(𝑥)

𝑥3
lim
𝑥→0

𝑓 𝑥 = 0.5

double f(double x) {
double num = tan(x) – sin(x);
double den = x * x * x;
return num / den;

}

>>>  f(1e-7) // 64 bits result
0.5029258124322410

Accurate result //128 bits result
0.5000000000000012

Rounding errors
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Rounding errors
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• The root cause is:

• And the rounding errors can be amplified by floating-point 
operations

• Large errors may lead to catastrophic software failures

➢ Missile yaw [skeel’ 92] 
➢ Stock trading disorder [Quinn’ 83]
➢ Rocket launch failure [Lions’ 96]

Finite precision bits cannot represent all real numbers exactly 

Precision optimization is a crucial work



How to solve it?
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Through rewriting
• Changing the order of floating-point operations can reduce errors

Consider: for an expression 
𝑙𝑜𝑔(1−𝑥)

𝑙𝑜𝑔(1+𝑥)
 in interval [0.1,0.9]

𝑙𝑜𝑔(1 − 𝑥)

𝑙𝑜𝑔(1 + 𝑥)

𝑙𝑜𝑔1𝑝(−𝑥)

𝑙𝑜𝑔1𝑝(𝑥)

𝑙𝑜𝑔1𝑝(𝑥 ∗ −𝑥 )

𝑙𝑜𝑔1𝑝(𝑥)
− 1

double a = 1.0e8, b = -1.0e8, c = 0.1;
printf(“%.10lf”, (a + b) + c); // 0.1000000000
printf(“%.10lf”, a + (b + c)); // 0.0999999940

Equivalent rewriting

Approximate rewriting
double x = 0.1e-6;
printf(“%.10lf”, (1-cos(x)) / (x * x)); // 0.4996003611
printf(“%.10lf”, 1.0 / 2.0 – (x * x) / 24.0 + (x * x * x * x) / 720.0); // 0.5000000000



How to solve it?
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𝑙𝑜𝑔(1 − 𝑥)

𝑙𝑜𝑔(1 + 𝑥)

𝑙𝑜𝑔1𝑝(−𝑥)

𝑙𝑜𝑔1𝑝(𝑥)

𝑙𝑜𝑔1𝑝(𝑥 ∗ −𝑥 )

𝑙𝑜𝑔1𝑝(𝑥)
− 1

What to do next?



How to solve it?
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We can divide the high error interval and use rewriting to optimize its precision

High error interval
𝒍𝒐𝒈𝟏𝒑(𝒙 ∗ −𝒙 )

𝒍𝒐𝒈𝟏𝒑(𝒙)
− 𝟏. 𝟎

𝒍𝒐𝒈𝟏𝒑(−𝟏)

𝒍𝒐𝒈𝟏𝒑(𝒙)

Two problems:
• How to determine the rewriting interval?
• How to rewriting?

Regime-based 
rewriting 𝒍𝒐𝒈(𝟏 − 𝒙)

𝒍𝒐𝒈(𝟏 + 𝒙)

Before precision optimization After precision optimization



Existing approaches and difficulties
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Regime-based rewriting is the main method of 
precision optimization

• Cannot find the regime in
many cases

• It’s difficult to search for
the optimal rewriting

• The number of regimes are
often much larger

• Low performance

Herbie Regina

A generally applicable and effective regime inference algorithm and 
optimal rewriting search algorithm are still missing



Regime-based rewriting of ARFA
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In order to solve the two problems

How to determine regimes more accurately? 

How to generate better rewriting expressions? 

• Get a startup expression with the lowest possible error
• Determine the high error regime based on the error distribution contour

• Rewriting based on the order of operations
• Supporting customization and extension of rewriting rules
• Dynamically detect rewriting expressions instead of cost model 



Error optimization using ARFA
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𝑓𝑒, 𝒟

෡𝑓𝑒, 𝒟

grain

Architecture of ARFA
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Error analysis
• Use MPFR to obtain dynamic 

errors

Preprocessing
• Choose a better start-up expression by comparing the

original with Herbie and Daisy’s rewriting expression



Error optimization using ARFA
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plotting

sketching

splitting

Effective regime inference

Through plotting error distribution, sketching boundary lines, and dynamically set 
the boundary line to obtain a more accurate regime



Error optimization using ARFA
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search

normalization simplification

expansion

code

optimizer

෡𝑓𝑒, 𝒟

Customized rewrite generation

Building an incomplete e-graph to obtain a optimal rewriting expression in every 
regime instead of using cost model 

1

𝑥 + 𝑦
+

1

𝑥 − 𝑦
+ 1 ⇒

𝑥 − 𝑦 + 𝑥 + 𝑦 + (𝑥 + 𝑦)(𝑥 − 𝑦)

(𝑥 + 𝑦)(𝑥 − 𝑦)

𝑥 − 𝑦 + 𝑥 + 𝑦 + 𝑥 + 𝑦 𝑥 − 𝑦 ⇒ 2𝑥 + 𝑥2 − 𝑦2

1 + 3𝑥 + 3𝑥2 + 𝑥3 ⇒ 1+ (3𝑥 + 3𝑥2 + 𝑥3 )

𝑙𝑜𝑔 1 + 𝑥 ⇒ 𝑙𝑜𝑔1𝑝(𝑥)

Normalization

Simplification

Reordering

Extended rules

ARFA supports normalization, simplification, reordering and extended rules to 
generate equivalent rewriting expressions



Evaluation

Benchmarks: total 60 expressions
• 56 expressions are from FPBench
• 4 expressions are from real-life numerical programs

𝒟 is set using large but reasonable ranges

Total 
Benchmarks

Single-variate Multi-variate Control flow Real-life

60 31 19 6 4
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Evaluation — Precision optimization effect
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ARFA performs better than Herbie and NumOpt in 60 and 52 cases respectively



Evaluation — Quality of rewriting

16

Arfa allows its regime inference to work with Herbie rewrite search heuristics

ARFA’s rewriting performs better than Herbie+ and Herbie𝜶 in 58 and 53 
cases respectively in the same regime   



Conclusion

https://github.com/yuanyuanxia/exprAuto

ARFA

• Effective regime 

inference

• Optimal rewriting 

generation

• Generalize Arfa

• Add more rewrite rules

• Integrate the RLIBM-

based approaches

17

Summary Future work

https://github.com/yuanyuanxia/exprAuto


THANK YOU FOR LISTENING

zyanz@hnu.edu.cn

Presenter: Zuoyan Zhang

ANY QUESTION?
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