

ARFA

An Agile Regime-Based Floating-Point Optimization Approach for Rounding Errors

Jinchen Xu¹, Mengqi Cui¹, Fei Li¹, <u>Zuoyan Zhang</u>²,

Hongru Yang¹, Bei Zhou¹, Jie Zhao²

¹ Information Engineering University, Zhengzhou, China
² Hunan University, Changsha, China

Outline

Rounding errors

- Some inputs may trigger significant floating-point errors
- Consider:

$$f(x) = \frac{\tan(x) - \sin(x)}{x^3} \qquad \lim_{x \to 0} f(x) = 0.5$$

double f(double x) {
 double num = tan(x) - sin(x);
 double den = x * x * x;
 return num / den;

>>> f(1e-7) // 64 bits result 0.5029258124322410

Accurate result //128 bits result 0.5000000000000012

Rounding errors

- The root cause is: Finite precision bits cannot represent all real numbers exactly
- And the rounding errors can be amplified by floating-point operations
- Large errors may lead to catastrophic software failures
 - Missile yaw [skeel' 92]
 - Stock trading disorder [Quinn' 83]
 - Rocket launch failure [Lions' 96]

Precision optimization is a crucial work

How to solve it?

Through **rewriting**

Changing the order of floating-point operations can reduce errors •

		Equivalent rewriting	double a = 1.0e8, b = -1.0e8, c = 0.1; printf("%.10lf", (a + b) + c); // 0.1000000000 printf("%.10lf", a + (b + c)); // 0.0999999940			
	2	Approximate rewriting	double x = 0.1e-6; printf("%.10lf", (1-cos(x)) / (x * x)); // 0.4996003611 printf("%.10lf", 1.0 / 2.0 – (x * x) / 24.0 + (x * x * x * x) / 720.0); // 0.500000000			
Consider: for an expression $\frac{log(1-x)}{log(1+x)}$ in interval [0.1,0.9]						
		$\frac{\log(1-x)}{\log(1+x)}$	$\frac{\log 1p(-x)}{\log 1p(x)}$ $\frac{\log 1p(x * (-x))}{\log 1p(x)} - 1$			

How to solve it?

6

How to solve it?

We can divide the high error interval and use rewriting to optimize its precision

Two problems:

- How to determine the rewriting interval?
- How to rewriting?

Existing approaches and difficulties

Regime-based rewriting is the main method of precision optimization

Regina

- Cannot find the regime in many cases
- It's difficult to search for the optimal rewriting

- The number of regimes are often much larger
- Low performance

A generally applicable and effective regime inference algorithm and optimal rewriting search algorithm are still missing

Regime-based rewriting of ARFA

In order to solve the two problems

How to determine regimes more accurately?

- Get a startup expression with the lowest possible error
- Determine the high error regime based on the error distribution contour

How to generate better rewriting expressions?

- Rewriting based on the order of operations
- Supporting customization and extension of rewriting rules
- Dynamically detect rewriting expressions instead of cost model

Architecture of ARFA

Choose a better start-up expression by comparing the original with Herbie and Daisy's rewriting expression

Through plotting error distribution, sketching boundary lines, and dynamically set the boundary line to obtain a more accurate regime

Customized rewrite generation

ARFA supports normalization, simplification, reordering and extended rules to generate equivalent rewriting expressions

Evaluation

Benchmarks: total 60 expressions

- 56 expressions are from FPBench
- 4 expressions are from real-life numerical programs

${\mathcal D}$ is set using large but reasonable ranges

Total Benchmarks	Single-variate	Multi-variate	Control flow	Real-life
60	31	19	6	4

Evaluation — Precision optimization effect

ARFA performs better than Herbie and NumOpt in 60 and 52 cases respectively

Evaluation — Quality of rewriting

Arfa allows its regime inference to work with Herbie rewrite search heuristics

ARFA's rewriting performs better than Herbie⁺ and Herbie^{α} in 58 and 53 cases respectively in the same regime

Conclusion

THANK YOU FOR LISTENING

ANY QUESTION?

Presenter: Zuoyan Zhang

zyanz@hnu.edu.cn