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Some inputs may trigger significant floating-point errors, considering:

f (x) =
tanx − sinx

x3 (1)

When x limits to zero, the result equals to 0.5, the equation as showns below:

lim
x→0

f (x) = 0.5 (2)

Considering the function in C++ language

double f(double x) {
double num = tan(x) - sin(x);
double den = x * x * x;
return num / den;
}

The result of f(1e-7) in double precision (64-bit) is 0.5029258124322410, while
the result with 128-bit precision is 0.5000000000000012
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The root cause is:
• Finite precision bits cannot represent all real numbers exactly

And the rounding errors can be amplified by floating-point operations

Large errors may lead to catastrophic software failures:

1 Missile yaw [skeel’ 92]

2 Stock trading disorder [Quinn’ 83]

3 Rocket launch failure [Lions’ 96]

Detect floating-point errors is a crucial work!
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Guided search

Guided search process
• Search space D = {(x, y) : c1 ∧ c2 ∧ c3 ∧ c4}
• c1, c2, c3 and c4 are constraints of the two variables x and y
• The points within R are input values that may trigger significant errors

• s is the input that triggers the maximum error

Guided search goal is to find the point of s 5/19
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Guided search

Difficulties

1 D may be complex and large, especially multi-dimension space

2 s and R could both be many
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What’s the difficulties of guided search?

6/19



Herbie1

• Using Random Search (RS)

S3fp2

• Using Binary Guided Random Testing (BGRT)

HSED3

• Using Hierarchical Search (HS)

EIFFEL4

• Using Polynomial Extrapolation Search (PES)

Limitations
1 Poor scalability for multi-parameter functions
2 Limited exploitation of floating-point characteristics
3 Insufficient parallelization
1https://github.com/herbie-fp/herbie.
2https://github.com/soarlab/S3FP.
3https://github.com/zuoyanzhang/HSED.
4https://github.com/zuoyanzhang/Maxfpeed. 7/19
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We present the FPEPD5 to solve those problems

Floating-point
expressions 

and 𝐷 Dedicated 
compilers SDPS

Maximum error 
and 

corresponding 
input

Dedicated compiler module generates the code of high-precision in order to
obtain the oracle value

SDPS is the core of the FPEPD

5https://github.com/zuoyanzhang/FPEPD. 8/19
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SDPS’s key innovations

1 Multi-level error classification

2 Specialized point generation strategies

3 Automatic strategy adaptation
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Error classification and sampling strategy

• Five-level error tiers (εmin, εs, εm, εl, εc) assigned after a quick detect; larger detected
error → higher tier

• Per-tier rules: higher tier → more aggressive sampling (more initial points, more
hotspots kept, more local variants)

Five-level classification steers adaptive sampling, focusing effort on high-error
regions while keeping overall cost low 10/19
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Point generation strategies
• Gradient search: follow local error slope with adaptive step to climb toward hot

spots
• Special-value probes: hit powers-of-two, interval edges, and nextafter neighbors

to stress corner cases
• Mantissa tweaking: keep exponent fixed, flip low-order bits to expose

reprentation-specific errors

These three tactics jointly maximize search coverage while zeroing in on the
worst errors 11/19
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Parallel implementation

• Sub-domains are independent, hence the search is embarrassingly parallel

• A dynamic thread pool spreads them across all CPU cores, keeping every core busy
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We implemented FPEPD using about 5,000 lines of code in C++ language

Experiment environment
• macOS 14.5 (BuildVersion 23F79) with an Apple M3 Pro chip

• 11 CPU cores (5 performance and 6 efficiency cores) and 14 GPU cores

• 18 GB memory

• Compiled with clang++ 16.0.0 using the "-lm -lmpfr" compilation options

Benchmarks
• We selected 59 benchmarks from FPBench6

• Encompassing all single-, double-, and triple-parameter expressions available in the
FPBench

• 32 univariate and 27 multivariate expressions

6https://fpbench.org/. 13/19
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Bencharmak converge
• Herbie and EIFFEL: Support multi-variable

detection, but limited by accuracy or high
overhead

• S3fp: Frequent timeouts (27 failures)

• HSED: Only work for single-variable cases

FPEPD advantages
• Supports both single and multi-variable

expressions

• Detects larger maximum errors in most cases

• Lower computational overhead

14/19

General applicability

14/19



Average bit error (higher is better)
• FPEPD 11.9/15.1* Herbie 6.1/4.9* EIFFEL

7.8/7.0*
*(mutli-variable subset)

Benchmarks where FPEPD detects the largest
error

• 40/59 vs Herbie

• 28/59 vs EIFFEL

• 54/59 vs S3fp

• 23/32 vs HSED
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Achieves remarkable speedup over existing tools
• 2.1x faster than Herbie

• 17.7x faster than EIFFEL

• 5169x faster than S3fp

Even surpasses HSED on single-parameter cases with 2.3x improvement
Maintains superior detection accuracy alongside high efficiency
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FPEPD: fist scalable, FP-aware search that locates maximum errors in both single-
and multi-parameter functions

Key innovations
• Multi-level error-classfication –> adaptive sampling

• Three FP-specific point strategies: gradient, special-value, mantissa-pattern

• Efficient parallel implementation

• Automatic strategy adaptation
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Takeaways
• FP representation matters ->representation-aware search outperforms blind methods

• Adaptive partition + parallelism delivers both accuracy and speed

• FPEPD is ready for real-world numerical code auditing

Future work
• Replace MPFR library with error-free transformations + randow execution for faster

high-precision refs

• Extend to loops, conditionals; support full programs, not just expressions
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THANK YOU!
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