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Abstract

We introduce a floating-point (FP) error optimization approach

called Arfa that partitions the domain D of an FP expression

𝑓𝑒 into regimes and rewrites 𝑓𝑒 in each regime where 𝑓𝑒 shows

larger errors. First, Arfa seeks a rewrite substitution 𝑓𝑜 with lower

errors across D, whose error distribution is plotted for effective

regime inference. Next,Arfa generates an incomplete set of ordered

rewrite candidates within each regime of interest, so that searching

for the best rewrite substitutions is performed efficiently. Finally,

Arfa selects the best rewrite substitution by inspecting the errors

of top ranked rewrite candidates, with enhancing precision also

considered. Experiments on 56 FPbench examples and four real-

life programs show that Arfa not only reduces the maximum and

average errors of 𝑓𝑒 by 4.73 and 2.08 bits on average (and up to 33 and

16 bits), but also exhibits lower errors, sometimes to a significant

degree, than Herbie and NumOpt.

CCS Concepts

• Mathematics of computing→ Numerical analysis; • Soft-

ware and its engineering→ Error handling and recovery.
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1 Introduction

As real numbers are approximated using FP representations with

finite precision in computers, numerical rounding errors are in-

evitable. Errors of individual FP expressions can be significant [23,

37] and may also result in an overall unacceptable result for a pro-

gram computed using a sequence of such FP expressions. A widely

cited example [2, 34, 40] is the American Patriot Missile failure [31]

caused by the accumulation of errors of individual FP expressions.

Improving the accuracy of individual FP expressions is thus of vital

importance.
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(a) 𝑓𝑒 = exp1x(𝑥 ).
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(b) 𝑓𝑜 .

Figure 1: The error plots of

exp1x(𝑥) before and after pre-

processing.

This issue was partially

solved by the state-of-the-

art (SOTA) toolśHerbie [23].

Given an 𝑓𝑒 with its do-

main D, Herbie generates

a collection of rewrite ex-

pressions that are more ac-

curate than 𝑓𝑒 on its sam-

pled inputs, and divides

D into sub-domains or

regimes. Each regime is

rewritten using the found

rewrite expressions so that

the overall accuracy can be improved. By targeting numerically un-

stable programs where extremely large errors are observed around

some inputs, Herbie and its followers [35, 37] infer regimes by

sampling a small number of dynamic inputs, but these approaches

sometimes loss their effectiveness when targeting specific examples,

e.g., Fig. 1a.
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Regina [26] considers numerically stable programs and infers

regimes using a search heuristic: derived from an initial partition

strategy that splits D into equally-sized regimes, it merges neigh-

boring regimes with the same expression, but the number of the

resulting regimes is often much larger, which degrades the execu-

tion performance of its produced expressions. As such, a generally

applicable and effective regime inference algorithm is still missing.

Once a regime partition is produced, rewriting tools are allowed

to replace 𝑓𝑒 in each regime of interest. To obtain a better rewrite

substitution, many approaches leverage equality saturation [23, 25,

33, 36] to build an equivalence graph or e-graph that contains all

rewrite candidates, and the one with the lowest errors is selected.

This strategy is also subject to some problems. First, the size of an e-

graph can be large due to the massive number of rewrite rules [21],

making the search for the optimal expressions non-trivial. Many

existing approaches select the optimal expressions via inaccurate

cost models and thus obtain sub-optimal results. Second, enhancing

precision is rarely considered as a rewriting rule. Hence, a better

heuristic for searching the optimal rewrite substitution is also absent.

To address these issues, in this paper, we study an Agile Regime-

based Floating-point optimization Approach, named Arfa. Given

an 𝑓𝑒 , Arfa first searches a rewrite substitution 𝑓𝑜 that has lower

errors across its domainD. Still consider Fig. 1a. A better expression

𝑓𝑜 (whose expression is omitted here for the sake of clarity) that

has lower errors across D (depicted in Fig. 1b) is found by Arfa.

The purpose of this preprocessing step is to build a better start-up

expression for follow-up regime inference and expression rewriting.

Next, Arfa builds a scatter plot of errors for 𝑓𝑜 by densely sam-

pling its inputs, better reflecting the error distribution than prior

tools [23, 35, 37]. The boundary line of a scatter plot is then used

to implement a regime inference algorithm wider applicable than

existing tools [7, 23, 26], which can not only split the domain of

Fig. 1a (numerically unstable) into [0.01, 0.33] and (0.33, 0.5] but
also extract two regimes, [0.06, 0.13] and [0.22, 0.50], for Fig. 1b
(numerically stable).

Finally, Arfa generates an incomplete set of ordered rewrite

candidates within each regime where 𝑓𝑜 should be substituted.

Several top ranked rewrite candidates are empirically executed,

amongwhich the onewith the smallest error is selected to replace 𝑓𝑜 .

While avoiding the need to build an inaccurate cost model [7, 23, 26],

this simple search heuristic also considers increasing precision as a

complementary rewriting strategy.

Arfa is made modular and the idea presented can easily be inte-

grated into other tools. Arfa also uses some optimization strategies

to combine regimes. In summary, Arfa is a general approach for

reducing FP errors by contributing:

• a general regime inference algorithm, which reduces the

complexity of Herbie’s algorithm [23] (ğ 5.5) while applicable

to numerically stable and unstable FP expressions;

• a rewriting heuristic that not only allows itself to perform

better than prior work [23, 35] but also avoids the need to

resort to an inaccurate cost model (ğ 6.5);

• a modular architecture (ğ 3) that is compatible to other er-

ror analysis tools [30], and can be integrated with different

rewriting techniques [21, 23] (ğ 7.3);

• and experimental results (ğ 7) on 60 benchmarks showing

that Arfa reduces the maximum and average errors of the

original expressions by 4.73 and 2.08 bits on average, and up

to 33 and 16 bits, respectively.

2 Background

Rounding Errors and Accuracy. An FP number can be expressed

as the combination of a signed mantissa and an exponent, but there

always exists some real numbers that cannot be expressed exactly,

making some computed results have to be approximated and re-

sulting in the difference between itself and the exact value. This

difference is called a rounding error or error for simplicity. Errors

caused by FP representations can be reduced by increasing preci-

sion, but specifying an appropriate precision is non-trivial, since

these approaches are either restricted by the possible execution

performance loss [10] or the precision-specific limitation [34].

Even if a higher precision is available, the errors of an FP expres-

sion are also influenced by its arithmetic, whose reordering may

offset the improved accuracy brought by the enhanced precision.

Accuracy expresses the proximity between a computed result and

the analytical value it tries to approximate. Consider a scenario that

computes the sum 𝑥 +𝑦 of two 32-bit FP numbers 𝑥 and 𝑦. The inex-

actness of this FP representation can be optimized by upgrading its

precision to 64 bits, but the error of the sum may increase when 𝑥 is

very large and 𝑦 close to 0 or vice versa. We care about the impact

of reordering FP arithmetic because such rearrangements nowa-

days take place frequently in many domains [21, 38], and rewriting

an FP expression this way is adopted by the recent regime-based

optimization approaches [23, 26].

Regime-based Rewriting. We explain regime-based rewriting ap-

proaches using single-variate expressions for the sake of clarity. A

rewriting system studies the error distribution of an expression 𝑒𝑥
of variable 𝑥 across its domain D and tries to substitute 𝑒𝑥 using

its rewrite candidate 𝑒𝑦 . As 𝑥 is stored discretely inD, it is possible

to know the errors of 𝑒𝑥 and 𝑒𝑦 under each value of 𝑥 , from which

one can observe the distribution of the errors across D, just like

Fig. 1 shows. One can determine which one between 𝑒𝑥 and 𝑒𝑦 is

with the lower errors and perform substitutions accordingly.

Regime-based rewriting tools [23, 26, 37] go one step further

by performing rewriting within regimes where 𝑒𝑥 exhibits larger

errors. Traditional rewriting systems are a special case of the regime-

based approach when D is treated as the only found regime, but

the regime-based tools can always use the one with lower errors

in each regime and thus obtain lower errors than both 𝑒𝑥 and 𝑒𝑦 .

The issue is that it is difficult to know which input ranges cover the

values that trigger large errors. Even if one can localize the input

values of large errors, there may still be many partition strategies,

and the situation becomes more complicated in multi-variate cases.

3 Overview of Arfa

We presentArfa to address the challenges faced by existing regime-

based rewriting approaches. Fig. 2 shows the architecture of Arfa.

The (violet) thick arrows connect the five stages: error analysis,

preprocessing, regime inference, rewrite generation, and code opti-

mization. The internal structure of a stage is related by solid (black)
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arrows, and a dashed (black) arrow is used to take in or produce

inputs/outputs.

𝑓𝑒 ,D

error
analysis

grain

preprocessing

plotting

sketching

splitting

normalization simplification

expansionsearch

code
optimizer

𝑓𝑒 ,D

ğ 4

ğ 5

ğ 6

Figure 2: Architecture of Arfa.

Arfa first performs error analysis (ğ 4) across D for 𝑓𝑒 , which

is extracted from a program’s basic blocks, i.e., without control

constructs like loops and if conditionals. 𝑓𝑒 can be a (piecewise)

function over multiple variables computed by any FP arithmetic

operators, possibly including transcendental functions as its sub-

expressions. For an 𝑛-variate FP expression, we assume that D is a

hyper-rectangular interval denoted as J[𝑙𝑏1, 𝑢𝑏1], · · · , [𝑙𝑏𝑛, 𝑢𝑏𝑛]K,
where 𝑙𝑏𝑖 and 𝑢𝑏𝑖 (1 ≤ 𝑖 ≤ 𝑛) are lower and upper bounds. This

simplification is not always a limitation, since a non-rectangular

domain is often the intersection of such lower/upper bounds and

complex constraints like 𝑥𝑖 + 𝑥 𝑗 ≤ 10. Arfa still works when these

complex constraints are relaxed. We found that this simplification

seems also required by prior work [7, 23] when we experimented

with them, although it was not explicitly declared.

Arfa’s error analysis uses the ulp error as its error metric. An

ulp error is computed as

𝑒𝑟𝑟𝑜𝑟 (𝑥) = |𝑝 (𝑥) − 𝑓 (𝑥) |
ulp(𝑓 (𝑥)) , (1)

where 𝑝 (𝑥) is the approximated result and 𝑓 (𝑥) is the correctly

rounded, double-precision value. ulp(𝑓 (𝑥)) is the ulp function

of 𝑓 (𝑥), used to measure the closeness between two accurately

representable double-precision numbers 𝑎 and 𝑏 nearest to 𝑓 (𝑥),
where 𝑎 ≤ 𝑓 (𝑥) < 𝑏 if 𝑓 (𝑥) ≥ 0 or 𝑎 < 𝑓 (𝑥) ≤ 𝑏 otherwise. The

ulp function is defined as

ulp(𝑓 (𝑥)) =
{

2𝑘−52 if 2𝑘 ≤ 𝑓 (𝑥) < 2𝑘+1 ∧ −1022 ≤ 𝑘 < 1023

2−1074 if 0 ≤ 𝑓 (𝑥) < 2−1022
,

(2)

where 𝑘 is an integer. This definition is the same as the one used

in recent work [16, 37], which in turn is derived from [12]. Arfa

defines its error metric this way because accurate errors do not

exactly reflect how significant they are over the value of 𝑓 (𝑥) while
relative errors are not defined at 𝑓 (𝑥) = 0. In contrast, ulp errors

do not have such limitations.

Next, the preprocessing (ğ 4) rewrites 𝑓𝑒 using 𝑓𝑜 across D. We

consider 𝑓𝑜 is better than 𝑓𝑒 if the maximal ulp error, which is

referred to as mae and computed as

mae = max
∀𝑥 ∈D

(𝑒𝑟𝑟𝑜𝑟 (𝑥)) = max
∀𝑥 ∈D

(
|𝑝 (𝑥) − 𝑓 (𝑥) |
ulp(𝑓 (𝑥))

)
, (3)

of 𝑓𝑜 is smaller than that of 𝑓𝑒 .mae can be replaced by other metrics,

e.g., 𝐿∞-norm [3], which can be computed by modifying the de-

nominator of mae, or average absolute error (aae), which computes

the average mean of all absolute errors measured a multiple of ulp.

In principle, mae and aae are nothing but only used to compute the

maximal and average ones of Arfa’s error metric.

Arfa’s regime inference (ğ 5) partitions D using three steps.

While configurable using a default setting, this engine can also

take as input a partition grain, offering the flexibility to control

the generation of regimes. Each regime that needs rewriting passes

through the search stage (ğ 6), which first converts fractions into a

normalized form, next simplifies the input and transforms it into an

expanded form, possibly with a follow-up reordering step, and fi-

nally selects the best equivalent expressions for individual regimes.

As producing regimes introduces additional if conditionals in

the generated code, the found rewrite substitutions are delivered

to the code optimizer, which aggregates if conditionals by making

use of the hardware branch predication techniques. Due to the page

limitation, we will not dig into the details of this stage in this paper.

Finally, the optimized expression 𝑓𝑒 is generated.

4 Error Analysis and Preprocessing

Since the preprocessing step also relies on error analysis, we intro-

duce these two steps together in this section.

4.1 Dynamic Error Analysis using MPFR

We use dynamic error analysis [30, 40] in Arfa because its results

are often considered asmore accurate than those of static analysis [5,

9]. The difficulty is that dynamic analysis only inspects the errors of

𝑓𝑒 under a limited number of values sampled from D. The value(s)

that trigger(s) the mae may be missed if the number of dynamic

samples is small, i.e., the risk faced byHerbie [23] and AutoRNP [37].

To mitigate this, we set the total number of dynamic samples as 𝑁 =∏𝑛
𝑖=1 𝑑𝑖 , where 𝑑𝑖 is the number of samples along the 𝑖-th variable

dimension. We instantiate 𝑁 as 500,000, a value also used by an

error optimizer S3FP [4] if 𝑛 = 1; otherwise, each 𝑑𝑖 is instantiated

using 1024 when 𝑛 = 2 or 256 when 𝑛 ≥ 3. The bounds of 𝑁

are inferred by well compromising between the degree to which a

selected number of samples can avoid the risks faced by prior work

and error analysis overhead. One can redefine them according to

his/her experimental environments. Sampling is executed in parallel

when dealing with a large 𝑛.

The next step is to determine how these samples are chosen. FP

numbers do not uniformly distribute along the real number line: the

distribution is dense if the range bounded by D is around zero, or

loose if the range is close to infinity. A sophisticated selection strat-

egy should consider the closeness of D to zero. However, we just

let the 𝑁 samples uniformly distribute across D for simplification

purposes, since 𝑁 is large and D is often small enough.

The errors are measured using MPFR [10], which can work with

arbitrary FP precision. Some FP expressions require MPFR to use

up to 8000 bits for correctly rounding results, which is heavyweight

and the reason why prior work [23] use a small number of sam-

ples. Fortunately, many benchmarks do not require such a high

precision; even for those that do have such a requirement, they

do not need such a high precision for every input. Furthermore,

our sampling approach remains embarrassing parallel even at such

a high precision, making the overhead of our sampling process

controllable. Note that it is free to substitute MPFR with any other

error analysis libraries [14, 30, 40].

1518



ISSTA ’24, September 16–20, 2024, Vienna, Austria Jinchen Xu, Mengqi Cui, Fei Li, Zuoyan Zhang, Hongru Yang, Bei Zhou, and Jie Zhao

4.2 Preprocessing

Arfa can now partition D. However, a start-up FP expression is

important for an FP rewriting system. For instance, if Arfa tries to

optimize Fig. 1a, its result may still have larger errors than Fig. 1b,

although the expressions of these examples are equivalent acrossD.

This is because the errors of Fig. 1b are much smaller than Fig. 1b,

but the optimization of Arfa is performed on the basis of Fig. 1a.

By considering this, we first try to rewrite 𝑓𝑒 without regime

partitioning so as to build a better start-up expression. The search

for 𝑓𝑜 is performed by first querying Herbie (version 1.6) and Daisy

(version 0.1) [7]. Next, Arfa selects the better one between the

found candidates, which is again comparedwith 𝑓𝑒 . The final winner

is 𝑓𝑜 . For example, the expression of Fig. 1b is delivered to Arfa

instead of the original one.

Note that Arfa can work independently of these tools. Its rewrit-

ing heuristics can be used in preprocessing at the expense of slightly

increased overhead, since we empirically execute each rewrite can-

didate to analyze their errors. These rewriting heuristics can also be

easily adapted to construct a complete e-graph in advance, which

can be queried without additional overhead if a well-defined cost

model is established.

5 Effective Regime Inference

With error analysis, each input sample (𝑥1, · · · , 𝑥𝑛) and its error

constitute an 𝑛-dimensional tuple (𝑥1, · · · , 𝑥𝑛, 𝑒𝑟𝑟𝑜𝑟 ), which we use
to perform regime inference for 𝑓𝑜 .

5.1 Plotting Error Distribution

We first assume 𝑓𝑜 is a single-variate expression. Given a set of 2D

tuples, one can use them to outline an error scatter plot of errors

for 𝑓𝑜 . Arfa employs MATLAB-v2020a [20] for this purpose, which

obtains error scatter plots like Fig. 1 or Fig. 3a, whose expression is

Bspline0(𝑥 ).

2 6 104 8
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(a) Scatter plot.
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(d) Filter out.

Figure 3: The scatter plot ofBspline0(𝑥) and its boundary lines

in (b) and (c) under different shrink factors. D = J[0, 10]K and
𝑁 = 500, 000.

5.2 Sketching Boundary Lines

Arfa evaluates every
(
𝑥 (𝑖) , 𝑒𝑟𝑟𝑜𝑟

)
to determine whether its error

should be optimized. 𝑥 (𝑖) is a sample of the 𝑥 variable. A group

of such 2D tuples whose errors need to be reduced constitute a

regime. However, Arfa has to evaluate all of the 𝑁 samples, which

may be time-consuming: a large 𝑁 is good to build a scatter plot,

but Arfa has to evaluate the same number of 2D tuples to infer

regimes. To resolve this, we let Arfa sketch the boundary line of an

obtained scatter plot, which is doable using the boundary function

of MATLAB.

Specifically, this function takes as input a scatter plot like Fig. 3a

and sketches a boundary line by managing a shrink factor 𝑠 (0 ≤
𝑠 ≤ 1). A smaller 𝑠 yields a rough (red) boundary line in Fig. 3b,

and a larger one produces an exact one in Fig. 3c. In practice, we

use the greatest possible value of 𝑠 , i.e., 1, which generates Fig. 3c

for the scatter plot of Bspline0(𝑥 ).

A boundary line is connected by 𝑏 points that lie in the boundary

of the scatter plot. One can obtain these 𝑏 points for further use.

𝑏 ≪ 𝑁 always holds because these points constitute a strict subset

of the 𝑁 points used to build the scatter plot. As such, sketching the

boundary line of a scatter plot can significantly reduce the number

of samples from 𝑁 to 𝑏. We collect the values of 𝑏 for Bspline0(𝑥)

under different shrink factors in Table 1. The bottom row reports

the reduced rate by sketching boundary lines. The reduced rate

gets decreased with the increase of 𝑠 , but Arfa only needs to use

1364 samples instead of 500,000 to generate regimes for Bspline0(𝑥 )

even when 𝑠 = 1, which consumes 7.79 seconds, making efficient

regime inference possible.

Table 1: The values of 𝑏 for Bspline0(𝑥) under different 𝑠.

variable values

𝑠 0.1 0.3 0.5 0.6 0.8 1.0

𝑏 182 445 708 839 1102 1364

reduced by 99.96% 99.91% 99.86% 99.83% 99.78% 99.73%

A large 𝑠 , however, makes a boundary line fluctuate signifi-

cantly (Fig. 3c). The boundary line can be partitioned in many

ways, and it is not straightforward to decide which one is the best.

In addition, some partition strategies [26] may split D into too

many regimes, which complicates the execution of Arfa and its

generated expression. We thus define an upper bound, 𝑢 so that

each (𝑥 (𝑖) , 𝑒𝑟𝑟𝑜𝑟 ) (0 ≤ 𝑖 < 𝑏) on the boundary line with 𝑒𝑟𝑟𝑜𝑟 ≤ 𝑢

can be filtered out by defining

𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑥) =
{

𝑢 if 𝑒𝑟𝑟𝑜𝑟 ≤ 𝑢

𝑒𝑟𝑟𝑜𝑟 if 𝑒𝑟𝑟𝑜𝑟 > 𝑢
(4)

According to the GNU C library reference manual [19], we set 𝑢

to 2 ulps by default for the x86_64 architecture we target and it can

be dynamically altered as will be explained later. We apply Expr. (4)

and generate a new boundary line, as shown in Fig. 3d. Each 2D

tuple can be denoted as
(
𝑥 (𝑖) , 𝑓 𝑖𝑙𝑡𝑒𝑟

(
𝑥 (𝑖)

))
. Compared to Fig. 3c,

Expr. (4) can conceal the fluctuations below 𝑢 and thus generates

fewer regimes.

2

1

0 0.4 0.8

(a) Bspline3(𝑥).

0 2-2
0

2

4

(b) sinOrder3(𝑥).

Figure 4: 𝑢 dose not cut the bound-

ary line. D is J[0, 1]K for (a) and

J[0, 3]K for (b). 𝑁 = 500, 000.

It might happen

that 𝑢 does not cut

the boundary line. For

example, Fig. 4a, which

means the boundary

line is always below

the horizontal line of

𝑢 = 2 ulps. In such

cases, we introduce

a lower bound 𝑙 and

first let 𝑙 = 0 ulps. We

repeatedly update 𝑢

using 𝑢 =
𝑢+𝑙
2 until

(1) the boundary line intersects with or becomes higher than the

1519



Arfa: An Agile Regime-Based Floating-Point Optimization Approach for Rounding Errors ISSTA ’24, September 16–20, 2024, Vienna, Austria

horizontal line of 𝑢, or (2) 𝑢 = 0.5 ulps. For the first condition, we

apply our regime inference algorithm if the horizontal line of 𝑢

cuts the boundary line; otherwise, we let 𝑙 = 2 ulps and repeatedly

update 𝑢 by letting 𝑢 =
𝑢+𝑙
2 to make the horizontal line of 𝑢 go up-

wards until it cuts the boundary. If the second condition is reached,

we will not optimize the expression because all errors are already

below 𝑢 = 0.5 ulps.

On the contrary, the boundary line of Fig. 4b is also always

above the horizontal line of 𝑢 = 2ulps. When such undesired cases

take place, we allow Arfa to dynamically change 𝑢 by repeatedly

updating its value using 𝑢 =
𝑢+mae

2 until the boundary line can be

cut by the upper bound.

5.3 Handling Multi-variate Expressions

When given an 𝑛-dimensional FP expression, one can obtain an

(𝑛 + 1)-dimensional scatter plot. By following the approach used

for single-variate expressions, one can compute a hyperface of the

error distribution and a hyperplane for the error upper bound 𝑢.

This hyperface is cut by the hyperplane, and the resulting objects

of the (𝑛 + 1)-dimensional scatter plot are the sets of errors that

need rewriting. One can project each of these (𝑛 + 1)-dimensional

objects onto the space of 𝑛-dimensional variables, with the cast

projections forming the regimes Arfa would like to obtain.

We take Fig. 5a, the 3D error scatter plot of a dual-variate function

sec4-example(𝑥,𝑦), as an example. The projection onto the space of

2D variables yields the top view shown in Fig. 5b. In principle, only

the left bottom corner composed of all light blue points should be

considered as a regime requiring rewriting, but it is too complicated

to exactly express it.
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Figure 5: Error distribution of sec4-example(𝑥,𝑦) and its three-

view drawings. D =J[1.001, 1.1], [1.001, 1.1]K.

We do not have to exactly compute such a range but instead seek

a more regular, possibly over-approximated shape, e.g., a convex

hull, that covers this range. This allows us to compute multiple 2D

error distributions along one of its variables each time, resulting in𝑛

2D error scatter plots. This process can be considered as projecting

multiple (𝑛 + 1)-dimensional points to a 2D point
(
𝑥
(𝑘1 )
1 , · · · , 𝑥 (𝑘𝑖 )𝑖 , · · · , 𝑥 (𝑘𝑛 )𝑛 , 𝑒𝑟𝑟𝑜𝑟

)

→
(
𝑥
(𝑘𝑖 )
𝑖 , 𝑒𝑟𝑟𝑜𝑟

)
∀1 ≤ 𝑘 𝑗 ≤ 𝑁 𝑗 ∧ 𝑗 ≠ 𝑖

(5)

where 𝑥
(𝑘𝑖 )
𝑖 (1 ≤ 𝑖 ≤ 𝑛) denotes the 𝑘𝑖 -th sample of the 𝑖-th

variable. The resulting 2D points constitute the 𝑖-th variant of the

these 𝑛 2D scatter plots. For each of these 2D scatter plots, one can

follow the approach to single-variate expressions to obtain the 1D

ranges of each 𝑥𝑖 . The final regimes should be the combination of

these 1D ranges.

Still consider the sec4-example(𝑥,𝑦) function. We obtain two 2D

error distribution plots, Fig. 5c and Fig. 5d, for Fig. 5a. Following

the way in single-variate cases, one can obtain two 1D ranges,

𝑥 ∈ [1.001, 1.04906] and 𝑦 ∈ [1.001, 1.04906], for this dual-variate
expression. The final sub-domain of our interest is the intersec-

tion of these two independent 1D ranges, which can be written

as J[1.001, 1.04906], [1.001, 1.04906]K and is represented by the red

rectangular shown in Fig. 5b.

5.4 Partitioning D
Now we introduce the regime inference algorithm. For single-

variate functions, the key insight to partition is to determine the

bounds 𝑟 𝑗 = [𝑙𝑏 𝑗 , 𝑢𝑏 𝑗 ] such that 𝑓 𝑖𝑙𝑡𝑒𝑟
(
𝑥 (𝑖)

)
> 𝑢 holds for each

𝑥 (𝑖) ∈ [𝑙𝑏 𝑗 , 𝑢𝑏 𝑗 ]. We assume the total number of such ranges is

𝑀 . Meanwhile, each point
(
𝑥 (𝑖) , 𝑓 𝑖𝑙𝑡𝑒𝑟

(
𝑥 (𝑖)

))
along this bound-

ary line can use 𝑓𝑜 if 𝑥 (𝑖) falls outside these 𝑀 ranges, which are

collected in one range. The total number of the ranges is thus𝑀 + 1.
With 𝑆𝑒𝑡 =

{(
𝑥
(𝑘 )
𝑖 , 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑥𝑖 )

)
: 0 ≤ 𝑘 < 𝑏𝑖 ∧ 0 ≤ 𝑖 < 𝑛

}
and a par-

tition grain 𝑔 taken as inputs, Algo. 1 invokes the handling of a

single-variate case for 𝑛 times to deal with a multi-variate expres-

sion, i.e., the outer foreach. The first inner foreach determines

the bounds of 𝑟 𝑗 by scanning the 𝑏 points along a boundary line.

𝑙𝑏 𝑗 is set to 𝑥 (𝑖+1) each time an increase from 𝑢 of 𝑓 𝑖𝑙𝑡𝑒𝑟
(
𝑥 (𝑖)

)

is captured, and 𝑢𝑏 𝑗 is set to 𝑥 (𝑖−1) each time a decrease to 𝑢 of

𝑓 𝑖𝑙𝑡𝑒𝑟
(
𝑥 (𝑖)

)
is observed. Three corner cases are handled as follows:

(1) the starting point of the scanning process is used to instantiate

𝑙𝑏0 if the first change of 𝑓 𝑖𝑙𝑡𝑒𝑟
(
𝑥 (𝑖)

)
is a decrease; (2) the ending

point is used to set 𝑢𝑏𝑀−1 when the last change of 𝑓 𝑖𝑙𝑡𝑒𝑟
(
𝑥 (𝑖)

)
is

an increase; (3) 𝑢 is changed when it does not intersect with the

boundary. The second inner foreach combines tight ranges into

𝑅 + 1 looser ones, with each treated as a regime. 𝑔 is determined

through many times of empirical execution, which also makes

Algo. 1 flexible to be used in diverse scenarios.

5.5 Intellectual Advances of Algo. 1 over SOTA

We summarize the intellectual advances of Algo. 1 over Herbie [23]

since it represents the state of the art. First, Algo. 1 reduces the

time complexity of regime inference. We discuss time complexity

of single-variate expressions for the sake of simplicity. The time

complexity is 𝑂 (𝑏) for Algo. 1 since it evaluates 𝑏 points when

determining the regime bounds; however, it is 𝑂 (ℎ2) for Herbie
that uses dynamic programming to evaluate its samples, whose

number is denoted using ℎ. Herbie (version 1.6) sets ℎ to 8000,

making ℎ2 much larger than 𝑏.

Second, Algo. 1 can also handle numerically stable functions.

Herbie uses an if conditional in its dynamic programming to cap-

ture a 1-bit error difference between two samples and decides a

regime should be added when this predicate is true. However, errors

of two samples of a numerically stable function often violate this

predicate. In contrast, Algo. 1 can capture the slight fluctuation of

a numerically stable program.
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Algorithm 1: Regime inference

Input: 𝑆𝑒𝑡 and 𝑔
foreach 𝑖 ∈ [1, 𝑛] do

1 project onto to 𝑖-th variable dimenion;

2 𝑀𝑖 ← 0;

foreach 𝑘 ∈ [0, 𝑏𝑖 ) do
if 𝑓 𝑖𝑙𝑡𝑒𝑟

(
𝑥
(𝑘 )
𝑖

)
= 𝑢 then

3 continue;

4 𝑙𝑏𝑀𝑖 ← 𝑥
(𝑘 )
𝑖 ;

while 𝑓 𝑖𝑙𝑡𝑒𝑟
(
𝑥
(𝑘 )
𝑖

)
> 𝑢 and 𝑘 < 𝑏𝑖 do

5 𝑘 ← 𝑘 + 1;
6 𝑢𝑏𝑀𝑖 ← 𝑥

(𝑘−1)
𝑖 ;𝑀𝑖 ← 𝑀𝑖 + 1;

if 𝑀𝑖 = 0 then
7 update 𝑢 and goto line 1;

8 𝑅𝑖 ← 0, 𝑟𝑒𝑠𝑒𝑡 ←true;

foreach 𝑗 ∈ [0, 𝑀𝑖 ) do
if 𝑟𝑒𝑠𝑒𝑡 = true then

9 sub-domain𝑅𝑖 ← 𝑟 𝑗 ;

10 𝑟𝑒𝑠𝑒𝑡 ←false;

if sizeof (sub-domain𝑅𝑖 )< 𝑔 × D𝑖 then
11 𝑢𝑏𝑅𝑖 ← 𝑢𝑏 𝑗+1 ; 𝑗 ← 𝑗 + 1;

else
12 𝑅𝑖 ← 𝑅𝑖 + 1; 𝑟𝑒𝑠𝑒𝑡 ←true;

13 intersecting sub-domains from 𝑛 dimensions;

Output:
(∏𝑛

𝑖=1 𝑅𝑖 + 1
)
sub-domains

6 Customized Rewrite Generation
∏𝑛

𝑖=1 𝑅𝑖 out of the Algo. 1 output regimes need rewriting. Arfa

decides to empirically execute the generated rewrite candidates to

return exact results. This requires Arfa to produce fewer rewrite

candidates. To achieve this, we introduce several preparation steps

before rewrite generation and search.

6.1 Normalization

First, 𝑓𝑜 may also include fractions as its sub-expressions that com-

plicate rewrite generation and search. We thus first convert 𝑓𝑜
involving fractions into a normalized form. We find the lowest com-

mon denominator of all terms in 𝑓𝑜 , converting 𝑓𝑜 into the form

of 𝑛𝑢𝑚𝑜

𝑑𝑒𝑛𝑜
. Without loss of generality, we assume that 𝑓𝑜 is of the

form 1
𝑥+𝑦 +

1
𝑥−𝑦 + 1 and it can be rewritten as 1

𝑥+𝑦 +
1

𝑥−𝑦 + 1 {
(𝑥−𝑦)+(𝑥+𝑦)+(𝑥+𝑦) (𝑥−𝑦)

(𝑥+𝑦) (𝑥−𝑦) .

Next, normalization is applied to 𝑛𝑢𝑚𝑜 and 𝑑𝑒𝑛𝑜 respectively

until all arithmetic operations between fractions are removed. In

case 𝑛𝑢𝑚𝑜 is still a fraction, 𝑑𝑒𝑛𝑜 is substituted by the product of

𝑛𝑢𝑚𝑜 ’s denominator and 𝑑𝑒𝑛𝑜 ; 𝑛𝑢𝑚𝑜 is replaced by its numerator.

If 𝑑𝑒𝑛𝑜 is a fraction, its numerator is used to substitute it and the

product of its denominator and 𝑛𝑢𝑚𝑜 is used to substitute 𝑛𝑢𝑚𝑜 .

This process is recursively performed until neither of 𝑛𝑢𝑚𝑜 and

𝑑𝑒𝑛𝑜 involves fractions.

6.2 Simplification

We use quasi-polynomials to refer to the expression forms accept-

able by 𝑓𝑜 ’s numerator/denominator after normalization. A quasi-

polynomial only involves addition, subtraction, multiplication, and

transcendental functions of its variables. We introduce a simplifica-

tion step to reduce the number of FP operations in quasi-polynomials.

Still consider the example used in ğ 6.1. Analytically, it can be sim-

plified to 2𝑥 +𝑥2 −𝑦2. We first multiply each term with another one

in every other multiplied sub-expression (𝑥 − 𝑦) + (𝑥 + 𝑦) + (𝑥 +
𝑦) (𝑥−𝑦) { (𝑥−𝑦)+ (𝑥+𝑦)+𝑥 (𝑥−𝑦)+𝑦 (𝑥−𝑦) { (𝑥−𝑦)+ (𝑥+𝑦)+
𝑥2 −𝑥𝑦 +𝑥𝑦 −𝑦2, making use of the distributivity identity, and next

combine like terms (𝑥−𝑦)+ (𝑥+𝑦)+𝑥2−𝑥𝑦+𝑥𝑦−𝑦2 { 2𝑥+𝑥2−𝑦2,
enabling term rearrangement and cancellation. This simplification

is performed recursively until a simplest form is obtained.

We also consider the removal of function inverses, e.g., ( 3
√
𝑥3) {

𝑥 , and, when given an expression 𝑥2 + sin(𝑥)𝑥2, Arfa transforms

it through 𝑥2 + sin(𝑥)𝑥2 { (1 + sin(𝑥)) 𝑥2, which is treated as a

quasi-polynomial of 𝑥 when transcendental functions are viewed as

coefficients. They are combined with constants when not multiplied

with a positive power of 𝑥 , since they are viewed the coefficients

of 𝑥0. Such combinations were not considered before [7, 23] but

generate more equivalent expressions. Note that Unlike Herbie [23],

Arfa performs a simplification rewrite search and does not need

to locate the most significant operator.

6.3 Reordering

A quasi-polynomial 1+3𝑥+3𝑥2+𝑥3 tends to bemore accurate within

a regime where 𝑥 is close to infinity, while 1 + (3𝑥 + (3𝑥2 + 𝑥3))
is more likely to exhibit lower errors when given a regime around

𝑥 = 0. This is because the powers of 𝑥 increase/decrease much faster

than 𝑥 when 𝑥 ≥ 1.0/𝑥 < 1.0. Indeed, 1 + (3𝑥 + (3𝑥2 + 𝑥3)) can
be defined using the associativity identity, but it is also achievable

through reordering. The addition operators are with varying errors,

and a good reordering of these terms can lead to lower errors.

To benefit from such a reordering, we categorize a regime using

the FP number 1.0. A regime is considered close to 0 when the

absolute values of each 𝑥 falling in this regime is less than 1.0, or

it can be treated as close to infinity. A regime is still considered as

close to 0 when the FP number 1.0 is covered by this regime, since

a regime is usually a small range, whose upper bound would not

be too far from 1.0.

For multi-variate cases, we treat other variables as constants

when reordering one variable once a time. Consider 𝑥2 +2𝑥𝑦 +𝑦2 as
an example. It is a good start when the current variable 𝑥 is close to 0

and𝑦 is considered as a constant. However,𝑦2+2𝑥𝑦+𝑥2 is preferred
when 𝑦 is very small variable and 𝑥 is treated as a constant. Such

analysis still obtains a consistent reordered expression, 𝑥2+2𝑥𝑦+𝑦2,
in some cases, e.g., 𝑥 is close to 0 and 𝑦 is near infinity, but they

may conflict with each when 𝑥 and 𝑦 are both close to 0. In such

cases, we randomly select one from the reordered expressions.

6.4 Rewrite Generation and Search

By taking as a simplified expression 𝑓 ′𝑜 and a flag is_fraction as

inputs, Algo. 2 describes how rewrite candidates are generated,

which we also leverage e-graph [22] to represent.

The outermost foreach iterates 𝑛 variables and updates the

e-graph by considering 𝑓 ′𝑜 as a single-variate form

𝑓 ′𝑜 (𝑥𝑣) = 𝑐0 (𝑥𝑣) + 𝑐1 (𝑥𝑣)𝑥𝑣 + 𝑐2 (𝑥𝑣)𝑥2
𝑣 + · · · + 𝑐𝑡 (𝑥𝑣)𝑥𝑡𝑣 (6)

where 𝑥𝑣 is one of the 𝑛 variables and its coefficient 𝑐𝑘 (𝑥𝑣) can con-

tain transcendental functions and/or other variables. The constant

term 𝑐0 (𝑥𝑣) is removed from 𝑓 ′𝑜 (line 3) and the number of remain-

ing terms is denoted as 𝑡 (line 4). The degree 𝑘 of a term 𝑐𝑘 (𝑥𝑣)𝑥𝑘𝑣
can also be a positive fraction. We extract the common factor 𝑥𝑣
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Algorithm 2: Build an incomplete e-graph

Input: 𝑓 ′𝑜 , e-graph, is_fraction
1 e-graph← { 𝑓𝑒 ,𝑓𝑜 ,𝑓

′
𝑜 };

foreach 𝑣 ∈ [1, 𝑛] do
2 𝑓 ′𝑜 ← write 𝑓 ′𝑜 like Expr. (6) w.r.t the 𝑣-th variable;

3 𝑓 ′𝑜 ← remove constant terms from 𝑓 ′𝑜 ;
4 𝑡 ← number of terms in 𝑓 ′𝑜 ;

foreach 𝑖 ∈ [1, 𝑡 − 1] do
foreach 𝑗 ∈ [𝑖 + 1, 𝑡 ] do

5 𝑑 ← 𝑗 − 𝑖 + 1;
6 𝑐 ← the common coefficient of 𝑥𝑣 after extracting 𝑥𝑣 from the first

𝑑 terms from 𝑓 ′𝑜 ;
7 𝑠𝑒𝑡 ← rewrite transcendental functions;

8 𝑔← Algo. 2 (𝑐 , 𝑠𝑒𝑡 , false);

foreach 𝑒 in 𝑔 do
9 𝑒𝑡𝑚𝑝 ← substitute 𝑐 using 𝑒 in 𝑓 ′𝑜 ;

if is_fraction then
10 𝑑𝑒𝑛𝑜 ← the denominator of 𝑓 ′𝑜 ;
11 𝑠𝑒𝑡 ← rewrite transcendental functions;

12 𝑔′ ← Algo. 2 (𝑑𝑒𝑛𝑜 , 𝑠𝑒𝑡 , false);

foreach 𝑓 in 𝑔′ do
13 e-graph← e-graph ∪ 𝑒𝑡𝑚𝑝

𝑓 ;

else
14 e-graph← e-graph ∪ 𝑒𝑡𝑚𝑝 ;

Output: e-graph

from each sub-expression composed of 𝑑 = 𝑗 − 𝑖 + 1 terms (line 5)

like 𝑐𝑖 (𝑥𝑣) + 𝑐𝑖+1 (𝑥𝑣)𝑥𝑣 + · · · + 𝑐 𝑗 (𝑥𝑣)𝑥 𝑗𝑣 where 𝑖 iterates from the

leftmost term 𝑐1 (𝑥𝑣)𝑥𝑣 to the rightmost but one, i.e., 𝑐𝑡−1 (𝑥𝑣)𝑥𝑡−1𝑣 ,

and 𝑗 iterates from 𝑐𝑖 (𝑥𝑣)𝑥𝑖𝑣 to the rightmost term 𝑐𝑡 (𝑥𝑣)𝑥𝑡𝑣 .
Algo. 2 instantiates 𝑐 (line 6) as 𝑐1 (𝑥) + 𝑐2 (𝑥)𝑥 for Expr. (6) in

the dual-nested loop’s first iteration, to which Algo. 2 is applied

recursively (line 8). Algo. 2 also tries to rewrite a sub-expression

involving transcendental functions via pattern matching. The e-

graph, 𝑔, of 𝑐 is then visited, and each equivalent expression of 𝑐 is

used to substitute 𝑐 in 𝑓 ′𝑜 . The resulting expression 𝑒𝑡𝑚𝑝 is a rewrite

candidate of 𝑓 ′𝑜 and is added to e-graph (line 14) when 𝑓 ′𝑜 is not a

fraction. Otherwise, the denominator, 𝑑𝑒𝑛𝑜 , of 𝑓
′
𝑜 is obtained (line

10), to which Algo. 2 is recursively applied again (line 12), and the

fraction
𝑒𝑡𝑚𝑝

𝑓
is taken as a node into e-graph (line 13).

Unlike prior work, Algo. 2 does not try to add all equivalent of 𝑓𝑒
into the e-graph but only considers limited equivalent expressions.

Hence, it only builds an incomplete e-graph. By convention, one

can now navigate this e-graph using a cost model to find the best,

but we decide to empirically execute the e-graph nodes to obtain

more accurate error distributions. The problem of empirical execu-

tion is the heavy execution overhead, and we thus cannot visit all

nodes of the e-graph. Although Arfa does not saturate its e-graph,

this representation is still used because a future saturation can be

introduced easily without much effort, which can then implement

an exhaustive search when necessary.

As such, we first sort the nodes of the e-graph in an ascending

order with respect to the number of FP operators. We consider

a rewrite expression with fewer FP operators is tend to exhibit

smaller error. In case the e-graph is of a large size, we only preserve

the top 30 ones and empirically execute 𝑛𝑢𝑚 out of them, which is

set to 10 by default. An exhaustive search of the e-graph is triggered

when 𝑛𝑢𝑚 = −1. Algo. 3 summarizes the search algorithm, with 𝑓 ′𝑜
and

∏𝑛
𝑖=1 𝑅𝑖 regimes taken as inputs.

Algorithm 3: Select the optimum

Input: 𝑓 ′𝑜 ,
∏𝑛

𝑖=1 𝑅𝑖 sub-domains

1 𝑟 ← 1;

while 𝑟 ≤ ∏𝑛
𝑖=1 𝑅𝑖 do

2 𝑓 ′𝑜 ← handle 𝑓𝑜 as described in ğ 6.1 to ğ 6.3;

if 𝑓 ′𝑜 is a numerator of 𝑓𝑜 then
3 e-graph← Algo. 2 (𝑓 ′𝑜 , ∅, true);

else
if 𝑓 ′𝑜 is the denominator of 𝑓𝑜 then

4 do nothing;

5 e-graph← Algo. 2 (𝑓 ′𝑜 , ∅, false);
6 e-graph← sort nodes in an ascending order w.r.t. the number FP operators

and preserve the top 30 nodes;

7 𝑠 ← 1, 𝑓𝑟 =𝑓 ′𝑜 ;
while 𝑠 ≤ 𝑛𝑢𝑚 and 𝑠 ≤ sizeof(e-graph) do

8 𝑒𝑡𝑚𝑝 ← select one node from e-graph;

if 𝑒𝑡𝑚𝑝 =𝑓 ′𝑜 then
9 continue;

if 𝑒𝑡𝑚𝑝 exhibits lower mae than 𝑓𝑟 then
10 𝑓𝑟 ← 𝑒𝑡𝑚𝑝 ;

11 𝑠 ← 𝑠 + 1;
if 𝑓𝑟 =𝑓 ′𝑜 then

12 𝑓𝑟 ← rewrite 𝑓𝑟 by enhancing precision;

Output: {𝑓𝑟 : 1 ≤ 𝑟 ≤ ∏𝑛
𝑖=1 𝑅𝑖 }

𝑓 ′𝑜 requires no further processing when it is the denominator

of 𝑓𝑜 , since its rewrite candidates have been combined with the

nominator. Line 6 performs the sort of the e-graph’s nodes. The

number of FP operators is the sum of FMA instructions, addition,

subtraction, and multiplication operators in the expression. To

demonstrate this sorting method is reasonable, we apply Algo. 2 to

three examples, i.e., b25, b27, and b34 of Table 2, which obtains 134,

61, and 169 rewrite substitutions, respectively, for these examples.

For each of them, we empirically measure the errors of all rewrite

substitutions and also sort them in an ascending order according

to their errors. When compare the top 30 of this order with the

top 30 obtained by line 6 of Algo. 3, there are 11, 27, and 6 rewrite

candidates that are included in both top 30 lists.

𝑓𝑟 is the rewrite candidate of the 𝑟 -th regime, randomly selected

from the e-graph (line 8), and its errors are compared with those of

𝑓 ′𝑜 . Line 9 is introduced to select a node other than 𝑓 ′𝑜 . 𝑓𝑟 will be sub-
stituted if the randomly selected rewrite exhibits a lower mae (line

10). Finally, Algo. 3 tries to rewrite the expression by increasing

the precision if no better equivalent expression is found (line 12).

Note that we only increase precision for a regime, whose impacts

on execution performance are much slighter than tuning precision

across D. Finally, the output of Arfa can be expressed as

𝑓𝑒 =

{
𝑓𝑟 if 1 ≤ 𝑟 ≤ ∏𝑛

𝑖=1 𝑅𝑖
𝑓𝑜 else

(7)

6.5 Superiority of Algo. 3 over SOTA

We still compare with Herbie [23] to clarify the superiority of

Algo. 3. First, Algo. 3 is more likely to generate results whose mae

and aae are smaller than or competitive to the best Herbie can

find. We take b25 of Table 2 as an example. The mae of the rewrite

substitution found by Herbie is shown using orange circle in the left

plot of Fig. 6, and the 30 blue ones are themae of rewrite candidates

generated by Arfa, all of which have smaller mae than that of

Herbie. This phenomenon also happens when comparing aae. The

right plot of Fig. 6 depicts the results of b34 of Table 2. The mae of
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the 30 (blue) rewrite candidates generated by Arfa is often smaller

than or comparable to that of Herbie, and the aae is very close. Such

results can also be observed by other examples.

1

2

mae of Arfa mae of Herbie aae of Arfa aae of Herbie

Figure 6: Comparing rewrite candidates generated by Arfa

and Herbie. Left: b25; right: b34. The 𝑦 axis represents errors.

Second, Algo. 3 avoids the need to define a cost model to select

the optimal rewrite candidate. This allows Arfa to select some of

the candidates and empirically execute them, whose precision can

be increased without changing the order of arithmetic operators.

Note that Herbie rewrites each sub-expression when it derives the

final result. The number of its rewrite candidates is often larger

than ours (Fig. 6), where we only show the errors of its final result.

7 Experiments

Arfa is implemented in about 7𝑘 LoC of C/C++, 0.2𝑘 of Python,

0.2𝑘 of MATLAB, and 0.3𝑘 of miscellaneous, which has been made

publicly accessible at https://gitee.com/mathlib/expr-auto. We con-

duct experiments on an Intel Xeon E5-2630 v4 CPU. The generated

C programs are compiled using GCC v9.4.0 with ł-O3 -lmž flags.

FPBench [6] includes 131 benchmarks, but some of them share the

same expression. We consider only one of such repeated bench-

marks. We also exclude an expression whosemae is smaller than 0.5

𝑢𝑙𝑝s, since they do not need rewriting. Four benchmarks containing

control constructs are handled by unrolling the if conditional state-

ments, just like what Regina [26] did. In total, we have 56 FPbench

benchmarks. To cover as diverse scenarios as possible, we also col-

lect four benchmarks extracted from real-life numerical programs,

one from POV-Ray [24] that uses ray-tracing to render a 3D image

and the other three from a polynomial support vector classifier [18].

The 60 benchmarks are summarized in Table 2. The fourth column

indicates whether a benchmark is stable or not, which is listed here

to show that Arfa is applicable to both kinds of FP expressions.

The sixth column collects the values used to instantiate 𝑢 on the fly,

demonstrating the agility of Arfa. The fifth and rightmost columns

are reported for reproducibility purpose.

We compare the results with Herbie-v1.6 [23] and NumOpt [35]

that rewrites programs via prioritized stochastic algebraic transfor-

mations. We also tried to experiment using AutoRNP [37], but its

publicly accessible code is tightly bound to the GSL library used in

its publication.We thus did not consider this tool.We use the default

D provided by FPBench when available. If some of the considered

tools cannot work on a given D, we either set it as J[0.01, 100]K, a
widely-used domain used by FPBench, or a reasonable range that

can let all considered tools work.

7.1 Comparison of Errors

We first report the mae in Fig. 7. As the mae values vary among the

60 benchmarks, we did not report its real values but normalize each

data with respect to the one of Arfa. That is to say, the normalized

Table 2: Summary of the benchmarks. Braces enclose ordered

values of 𝑢 and the numerical stability, which is determined

after error scatter plots. Source of 𝑓𝑜 is reported in the right-

most: 26 from Herbie, 29 from 𝑓𝑒 and 5 from Daisy.

no. benchmark stable D 𝑢 (in𝑢𝑙𝑝s) 𝑓𝑜

si
n
g
le
-v
ar
ia
te

b1 Bspline3 ✓ J[0, 1]K 1.0 Herbie
b2 exp1x × J[0.01, 0.5]K 1.0 Herbie
b3 exp1x_log ✓ J[0.01, 0.5]K 1.0 original
b4 intro_example ✓ J[0, 999]K 1.0 original
b5 logexp × J[−8, 8]K 1.0 Herbie
b6 NMSEexample31 ✓ J[0.01, 100]K 2.0 Herbie
b7 NMSEexample310 × J[−1, 1]K 2.0 Herbie
b8 NMSEexample34 × J[0.01, 3]K 2.0 Herbie
b9 NMSEexample35 ✓ J[0.01, 100]K 1.0 Herbie
b10 NMSEexample36 ✓ J[0.01, 100]K 2.0 Herbie
b11 NMSEexample37 × J[0.01, 100]K 0.5 Herbie
b12 NMSEexample38 × J[0.01, 100]K 6.05 Daisy
b13 NMSEexample39 × J[0.01, 1]K 6.02 original
b14 NMSEproblem331 ✓ J[0.01, 100]K 1.0 Herbie
b15 NMSEproblem333 ✓ J[0.01, 0.99]K 1.5 Herbie
b16 NMSEproblem334 × J[0.01, 100]K 2.0 Daisy
b17 NMSEproblem336 ✓ J[0.01, 100]K 1.0 Herbie
b18 NMSEproblem337 × J[0.01, 100]K 1.0 original
b19 NMSEproblem341 × J[0.01, 100]K 2.0 Herbie
b20 NMSEproblem343 × J[−1, 1]K 1.0 Herbie
b21 NMSEproblem344 × J[0.01, 100]K 0.875 Herbie
b22 NMSEproblem345 × J[0.01, 100]K 6.02 original
b23 NMSEsection311 × J[0.01, 100]K 1.0 Herbie
b24 predatorPrey ✓ J[0.1, 0.3]K 2.0 original
b25 sine ✓ J[− 𝜋

2 ,
𝜋
2 ]K 1.0 Herbie

b26 sineorder3 ✓ J[−2, 2]K 3.13 Herbie
b27 sqroot ✓ J[0, 1]K 0.625 Herbie
b28 sqrt_add ✓ J[1, 1000]K 2.0 original
b29 test05_nonlin1,r4 × J[1.00001, 2]K 1.25 Herbie

m
u
lt
i-
v
ar
ia
te

b30 test05_nonlin1_test2 ✓ J[1.00001, 2]K 1.25 Herbie
b31 verhulst ✓ J[0.1, 0.3]K 1.375 original

b32 ComplexSinCos {✓,×} J[0, 1], [0, 1]K {286.11, 6.02} original
b33 ComplexSquareRoot {✓,✓} J[0, 1], [0, 1]K {1.0, 1.0} original

b34 doppler1
{✓,✓,
✓}

J[−100, 100], [20,
20000], [−30, 50]K

{2.59,2.0,
2.59}

original

b35 doppler2
{✓,✓,
✓}

J[−125, 125], [15,
25000], [−40, 60]K

{2.0,2.0,
3.11}

original

b36 doppler3
{✓,✓,
✓}

J[−30, 120], [320,
20300], [−50, 30]K

{2.51,2.0,
2.51}

original

b37 hypot32 {✓,✓} J[1, 100], [1, 100]K {2.0, 2.0} Herbie
b38 i4 {✓,✓} J[0.1, 10], [−5, 5]K {2.0, 2.0} Daisy

b39 i6 {×,×} J[0.1, 10], [−5, 5]K {7.87E+06,
8.40E+06}

Daisy

b40 NMSEexample33 {×,×} J[0, 100], [0, 100]K {1.68E+06,
1.54E+06}

original

b41 NMSEexample332 {✓,×} J[0, 100], [0, 100]K {495.77, 1740.88} original
b42 NMSEexample335 {×,×} J[0, 100], [0, 100]K {1.0, 1.0} original
b43 NMSEexample346 {✓,✓} J[0, 1], [1, 2]K {4.07, 4.04} original
b44 NMSEsection35 {×,×} J[0, 1], [0, 1]K {0.75, 0.75} Herbie
b45 polarToCarthesianX {✓,×} J[1, 10], [0, 360]K {8.23E+12, 2} original

b46 polarToCarthesianY {✓,×} J[1, 10], [0, 360]K {2.16E+12,
1.34E+12}

original

b47 sec4example {×,×} J[1.001, 2], [1.001, 2]K {1.25, 1.25} Herbie
b48 test03_nonlin2 {✓,✓} J[0, 1], [−1,−0.1]K {1.375, 1.25} original
b49 theta {✓,✓} J[1, 100], [1, 100]K {2.0, 2.0} original

b50 turbine1 {✓,✓} J[−4.5,−0.3],
[0.4, 0.9], [3.8, 7.8]K

{3.00, 2.83, 2.85} original

co
n
tr
o
l
fl
o
w

b51 squareRoot3 ✓ J[0, 10]K 0.5 original
b52 squareRoot3Invalid ✓ J[0, 10]K 0.5 original
b53 cav10 ✓ J[0, 10]K 0.5 original
b54 gustafsonExample ✓ J[0, 100]K 0.5 original
b55 smartRoot × J[−2, 2]K 2 original
b56 triangleSorted ✓ J[1, 9]K 0.5 original

re
al
-l
if
e

b57 pov_ray
{×,×,
×,×,
×}

J[−𝜋, 𝜋 ], [−𝜋, 𝜋 ],
[−1, 1], [−1, 1],
[−1, 1]K

{6.06E+15,
1.05E+16, 2.0,
1.11E+04,
9.86E+03}

Herbie

b58 polyIDX0
{×,×,
×,×}

J[3.0, 9.0],
[1.5, 5.0], [−2, 10]
, [−1.0, 3.5]K

{3.88E+05,
9.34E+05,

2.25E+05, 6.0}
Herbie

b59 polyIDX1
{×,×,
×,×}

J[3.0, 9.0],
[1.5, 5.0], [−2, 10]
, [−1.0, 3.5]K

{7.59E+05,
9.71E+05,

6.34E+05, 6.0}
Daisy

b60 polyIDX2
{×,×,
×,×}

J[3.0, 9.0],
[1.5, 5.0], [−2, 10]
, [−1.0, 3.5]K

{6.0, 9.88E+05,
5.61E+05,
5.61E+05}

original
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mae should always be 1 forArfa, and a larger normalized number is

worse. To better reflect the difference between the used approaches,

we set the maximal value for the normalized mae to 5, and those

greater than this value are not exactly depicted.

We also report how close a system can get to the maximal ef-

fective number of bits (ENOB). As the maximal ENOB ENOB𝑚𝑎𝑥

depends on the precision of the variables, we also normalize these

results. Specifically, an FP expression using 64-bit variables can

have at most 53 ENOB, which is 24 for one with 32-bit variables.

We have 3 benchmarks (b37-b39) using 32-bit variables; all of the

remaining use 64-bit variables. When a system obtains an mae for

an expression, we first compute the ENOB number for itsmae using

ENOB = ENOB𝑚𝑎𝑥 − log2 (mae) =

ENOB𝑚𝑎𝑥 − log2
(
max
∀𝑥∈D

(
|𝑝 (𝑥) − 𝑓 (𝑥) |
ulp(𝑓 (𝑥))

))
.

(8)

Next, we normalize Expr. (8) with respect to ENOB𝑚𝑎𝑥 . ENOB is

the metric used by Herbie and NumOpt to report their experimen-

tal results. The downwards bars of Fig. 7 show these normalized

numbers.

Arfa always exhibits lower mae than Herbie, because it always

finds effective regime strategies while Herbie fails to achieve this

goal for many benchmarks. Table 3 reports the number of regimes

found by our work, with the effect of code optimization also shown.

Besides, Arfa’s rewrite search algorithm is better than those of

others. Herbie builds an e-graph and tries to simplify expressions

when possible, with rewriting and series expansion both considered,

but it often rewrites 𝑓𝑒 without regime partition. Take predator-

Prey(𝑥 ) as an example. Its original expression obtains themae = 2.79

ulps at 𝑥 = 0.13017, but Herbie increases it to 3.67𝐸 + 15 ulps at
𝑥 = 0.9999996. Our prepossessing can take as input these optimized

expressions and enhance the accuracy.

For b4, the original expression is already with ENOB𝑚𝑎𝑥 , the

considered tools thus did not enhance its accuracy. The closeness

to ENOB𝑚𝑎𝑥 is use to demonstrate that (1) Arfa can optimize the

mae when its original ENOB number is not so close to the maximal

one (b7, b8, b19, b45, and b56) and (2) the true value ofmae can still

be lowered when the original ENOB number is already very close

to ENOB𝑚𝑎𝑥 (b25-b28, b30, b34 and b35).

None of the above-mentioned tools optimizes b39, whose expres-

sion is sinf (𝑥 ∗ 𝑦), since 𝑥 ∗ 𝑦 has no equivalent expressions. By

enhancing precision, Arfa replaces the 32-bit sinf with its 64-bit

equivalence sin. The reason why the mae is still not optimized by

Arfa resides in the regime inference algorithm. Its mae is outside

the regimes that need rewriting. However, its aae across D can be

improved slightly, as will be discussed in ğ 7.2.

Arfa obtains larger mae than NumOpt for 8 benchmarks. For

b7, b13, b33, b39, b53, and b57, Arfa obtains finer-grained regimes

than NumOpt, and its number of regimes is large than that found

by NumOpt. Both approaches rewrite an expression within each

regime and only consider precision enhancing as a complementary

optimization when no better rewrite substitution can be found. Due

to the larger number of regimes, Arfa is more likely to rewrite

an expression than enhancing its precision, but the accuracy im-

provement effect of precision enhancing is usually better than a

rewrite substitution. For b40 and b41, Arfa performs less well than

Table 3: Comparison of regimes (fused by the code optimiza-

tion in the 3rd column) and the overhead of Arfa.

no.
Regimes Overhead of Arfa (in seconds)

𝑅𝑖 Prepro-
cessing

Regime inference Rewrite
search

Code
generation

Overall
Original Fused Sketching Splitting

b1 34 19 1.69 20.91 4.52E-03 70.74 0.86 94.20

b2 2 2 2.01 20.83 1.69E-03 4.02 0.95 27.81

b3 1 1 2.11 35.02 1.86E-03 6.71 0.97 44.82

b4 9 6 1.67 21.89 3.66E-02 11.10 0.83 35.53

b5 3 1 1.95 21.03 7.88E-04 2.17 1.09 26.24

b6 16 5 1.84 21.03 2.20E-03 25.90 0.79 49.55

b7 3 3 2.46 20.63 1.06E-03 6.40 1.19 30.67

b8 0 0 2.30 0.00 0.00E+00 0.00 0.00 2.30

b9 15 3 2.45 20.99 2.97E-03 70.10 1.11 94.65

b10 13 6 1.75 21.06 1.61E-03 105.59 0.81 129.21

b11 75 1 1.77 21.23 1.62E-02 2.12 0.94 26.08

b12 1 1 3.11 31.51 8.55E-04 12.52 1.01 48.15

b13 1 1 1.13 30.89 8.41E-04 3.65 0.90 36.58

b14 18 10 1.77 20.95 1.64E-03 44.41 0.87 68.00

b15 2 2 1.76 20.74 1.56E-03 7.49 0.79 30.77

b16 3 3 2.36 35.83 5.61E-04 31.45 1.05 70.69

b17 12 6 2.11 21.65 5.63E-03 11.70 1.10 36.56

b18 2 2 1.21 30.90 5.17E-03 4.46 0.94 37.52

b19 5 2 1.87 20.65 1.16E-03 11.35 0.83 34.70

b20 3 3 2.01 20.72 9.30E-04 6.68 1.12 30.52

b21 5 4 2.01 37.18 7.85E-03 1.88 0.98 42.06

b22 2 2 1.22 31.63 3.76E-03 10.97 1.20 45.01

b23 1 1 2.05 19.25 2.38E-04 2.04 1.05 24.39

b24 1 1 1.83 20.73 1.37E-03 4.73 0.90 28.19

b25 2 2 2.06 20.22 1.35E-03 358.16 0.89 381.32

b26 2 2 2.27 20.75 8.06E-04 13.09 0.87 36.98

b27 1 1 1.83 20.68 3.43E-04 94.18 0.88 117.58

b28 40 3 1.74 22.49 1.45E-02 5.63 0.86 30.74

b29 1 1 2.11 21.53 1.32E-03 6.07 0.84 30.54

b30 1 1 1.67 21.57 1.28E-03 6.10 0.83 30.17

b31 1 1 1.68 20.42 1.92E-03 4.61 0.85 27.56

b32 {1, 1} {1, 1} 2.31 19.80 2.21E-03 6.25 1.14 29.51

b33 {1, 1} {1, 1} 1.81 14.14 6.23E-04 7.09 0.89 23.92

b34 {3,8, 101} {1,4,1} 6.28 14.81 4.58E-03 439.85 3.09 464.03

b35 {2,9,6} {1,5,2} 6.37 14.49 4.59E-03 322.72 3.09 346.67

b36 {13, 7,49} {8, 5,11} 6.21 15.71 4.09E-03 229.06 3.11 254.10

b37 {0,0} {0,0} 1.75 0.00 0.00E+00 0.00 0.00 1.75

b38 {0,0} {0,0} 1.68 13.18 2.41E-02 3.29 1.23 19.41

b39 {1,1} {1,1} 2.10 16.04 5.81E-03 2.14 1.13 21.42

b40 {1,1} {1,1} 2.15 19.79 4.27E-04 4.37 1.22 27.53

b41 {1,1} {1,1} 2.63 21.84 9.26E-04 5.74 1.34 31.54

b42 {1,1} {1,1} 2.08 17.73 5.23E-03 8.99 1.12 29.92

b43 {1,2} {1,2} 2.86 27.98 6.91E-04 3.83 2.03 36.69

b44 {1,1} {1,1} 1.90 15.59 5.19E-04 2.40 1.16 21.05

b45 {1,7} {1,2} 3.07 15.85 3.68E-02 5.82 1.11 25.88

b46 {1,1} {1,1} 2.91 17.03 1.58E-02 11.24 1.08 32.27

b47 {2,2} {2,2} 1.92 13.15 6.66E-04 0.00 0.93 16.00

b48 {2,2} {2,2} 1.67 12.55 1.49E-03 2.17 0.96 17.36

b49 {41,26} {6,11} 3.41 20.32 5.22E-03 12.51 1.46 37.71

b50 {2,1,3} {2,1,3} 5.32 14.03 1.05E-03 1840.57 2.63 1862.54

b51 3 3 0.85 117.49 5.97E-03 6.62 0.84 125.80

b52 3 3 0.92 21.62 5.77E-03 5.72 0.92 29.18

b53 7 3 0.83 19.73 4.28E-03 10.24 0.84 31.64

b54 0 0 0.95 0.00 0.00E+00 0.00 0.00 0.95

b55 2 2 0.87 16.52 1.13E-03 5.41 0.94 23.73

b56 0 0 2.23 0.00 0.00E+00 0.00 0.00 2.23

b57 {2,2,2,2,1}
{1,1,1
2,1}

2.84 14.57 1.42E-03 677.49 1.48 696.39

b58 {1,1,1,1} {1,1, 1,1} 4.87 15.39 1.11E-03 66.78 1.72 88.77

b59 {1,1,1,1} {1,1, 1,1} 1.47 14.76 1.14E-03 56.31 1.49 74.03

b60 {1,1,1,1} {1,1, 1,1} 2.76 18.54 2.87E-03 13.80 1.37 36.47

NumOpt because it only rewrites 𝑓𝑜 in its
∏𝑛

𝑖=1 𝑅𝑖 regimes that need

rewriting, which has been explicitly described by Expr. (7). For the

remaining one sub-domain, Arfa still uses 𝑓𝑜 . Note that NumOpt

always rewrites an expression across D regardless whether it is

split or not. This is closely related to the upper bound 𝑢 defined

by our approach. Further optimizing the single sub-domain can

alleviate this issue.

There exists some examples for which other tools did not have

data in Fig. 7 due to execution failures or out-of-time execution
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Figure 7: The normalized mae (the upwards 𝑦 axis; lower is better.) and closeness to the maximal ENOB (the downwards 𝑦 axis;

longer is better.). 𝑥 axis is benchmark labels. An mae has the largest ENOB when its downwards bar touches the red line.
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Figure 8: The normalized aae, represented by the 𝑦 axis; lower is better. 𝑥 is the label number of each benchmark.

issue. For b57, the original mae is 2.83E+16, which is reduced by

Arfa to 1.21E+16. Both are 0 ENOB, but Arfa can still reduce the

errors.

As for ENOB, Arfa and NumOpt improve the ENOB numbers

of 𝑓𝑒 by 4.73 bits and 4.42 bits, respectively. Although the average

means of these two tools are close, Arfa achieves higher ENOB

improvements for some of the benchmarks: Arfa achieves a 33-bit

accuracy for b20, but the largest ENOB improvement of NumOpt is

20 for b40. Arfa usually leads to positive improvements or does not

degrade the ENOB number (b3, b33, and b48), because the original

ENOB numbers are already very close to the maximum (Fig. 7). In

contrast, Herbie some reduces the ENOB numbers significantly (b32,

b39, b50, b58, b59, and b60) though it also achieves a high ENOB

number for b19 and b20. This makes it average mean improvement

of ENOB number is close to 0.

7.2 Comparison of aae

To demonstrate Arfa can also optimize other metrics, we reported

the data of aae in this section, with the normalized results with

respect to Arfa’s results shown in Fig. 8.

Arfa achieves similar results to that of mae: its aae is the best

one for 46 out of the 60 benchmarks. This demonstrates that Arfa

exhibits a steady performance when considering different metrics

although it uses mae to perform regime inference and rewrite gen-

eration/search. Herbie obtains lower aae for b13, b16, b18, b34, b35,

b36, b37, etc., but the different is insignificant. This is because Arfa

found a rewrite substitution with lower mae than other tools for

these examples, but the aae is larger than those of Herbie. Using aae

to infer regime inference can alleviate or even avoid this issue. The

result of NumOpt is similar to its performance in ğ 7.1. Generally

speaking, Herbie performs better when using mae as the metric.

We also collected the ENOB numbers for aae, which is similar

to the case of mae. Due to the page limitation, we do not show this

comparison here.

7.3 Isolating the Effects of Regime Inference
and Rewrite Search of Arfa

A major difference between Algo. 1 and Herbie’s regime inference

is the increased number of dynamic samples. This section reports

the result of Herbie+ which samples the same number of inputs

for regime inference. Unfortunately, Herbie+ throws out an out-of-

time exception when handling multi-variate functions, for which

we thus set 𝑁 to 10242, a maximal value that can guarantee the

execution of Herbie+. Themae and aae of Herbie+ normalized with

respect to their counterparts of Arfa are depicted in Fig. 9.

While achieving different results from Herbie, Herbie+ still per-
forms less well than Arfa concerning both mae and aae. The ex-

ceptional cases Herbie+ obtains a smaller mae than Arfa are b13

and b16, for which the search heuristic randomly filters out the

optimal rewrite candidate. In summary, this experiment further

demonstrates the necessity to implement Algo. 1 and its superiority

to the state of the art.

Arfa also allows its regime inference to work with other rewrite

search heuristics. To validate this effect, we feed the regimes pro-

duced by Algo. 1 to Herbie, which we refer to as Herbie𝛼 , whose

mae and aae normalized with respect to their counterparts of Arfa

are also reported in Fig. 9.

Similar to Herbie+, Herbie𝛼 under-performs in most cases than

Arfa concerning both mae and aae even when given the same

partition strategy, validating that the rewrite search algorithm of

Herbie often finds an inferior substitution than ours (Algo. 3). Some

benchmarks observe smaller mae and/or aae than Arfa, for which

the reason is two folded: one is the same as that in the case of

Herbie+, and the other is the same as explained in ğ 7.2.

7.4 Overhead

We report the overhead of Arfa in the rightmost three columns of

Table 3, which shows that the code generation overhead is often
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Figure 9: The normalized mae and aae of Herbie+ and Herbie𝛼 over those of Arfa. Lower is better.

less than 1 second due to parallel execution. In contrast, empirically

inspecting errors consumes most of Arfa’s execution time, we alle-

viate this issue using a tunable number of search trails in Algo. 3. To

illustrate the effect of 𝑛𝑢𝑚, we report mae and the search overhead

of b27. One can obtain the minimal mae, 0.66 ulps, when 𝑛𝑢𝑚 is

set to 30, the total number of the top ranked rewrite candidates

generated by Arfa. We perform five searches, each empirically in-

specting the errors of 𝑛𝑢𝑚 e-graph nodes, and compute the average

mean for both mae and the search overhead. Table 4 shows that

the mae gets smaller with the increase of num, but the execution

time also becomes longer. As such, setting a reasonable 𝑛𝑢𝑚 is

important, and we set 𝑛𝑢𝑚 to 10 as a well trade-off between this

possibility and the search overhead. One can set 𝑛𝑢𝑚 to its greatest

possible value if he/she does not care about the search time.

Table 4: Effect of 𝑛𝑢𝑚 on

mae and search overhead in

seconds.

𝑛𝑢𝑚 mae
average mean of five searches
sequential

(current result)
parallel

(estimated result)

5 0.79 3.55 0.71
10 0.72 6.53 0.65
15 0.70 10.14 0.68
20 0.68 13.71 0.69
25 0.66 17.29 0.69
30 0.66 20.87 0.70

Sequentially executing the

search algorithm can be paral-

lelized to reduce its overhead.

The rightmost column of Ta-

ble 4 shows that the estimated

execution time, each value of

which is obtained by dividing

its preceding number using

𝑛𝑢𝑚. One can expect for a con-

stant overhead (about 0.70s)

for this search process if par-

allelization is introduced in fu-

ture. Besides, breaking a large,

complex FP experssions into smaller sub-expressions using stable

FP operators is another solution to alleviate its long overhead issue,

because such operators do not introduce significant FP errors [41].

8 Related Work

Error detection is the first step to develop a tool for reducing er-

rors. Arfa leverages MPFR [10] for error detection but can also

be specialized to integrate with other methods. Arfa does not

intend to prove tight bounds for errors like what static error analy-

sis [5, 8, 9, 11, 15, 16, 32] did.

Many existing approaches leverages regimes to locate inputs of

large errors for numerically unstable [23, 35, 37] or stable expres-

sions [26]. Arfa also uses a dynamic sampling approach for regime

inference, but the sampling number 𝑁 is much larger than these

tools. Increasing the number of samples Herbie cannot obtain the

same effect of Arfa. An error plot is used for generating regimes

by analyzing the fluctuation of its boundary line, without creating

many equally-sized sub-domains like Regina [26]. Besides densely

sampling, the workflow of Arfa also differs from that of Herbie.

As depicted in Fig. 2, Arfa first performs regime inference and

next produces rewrite expressions. On the contrary, Herbie carries

out the regime inference as a post pass of its generation of rewrite

expressions. In particular, Arfa leverages its preprocessing step to

find a good start-up expression, which further distinguishes itself

from Herbie.

Due to the great number of rewrite rules [21], a rewriting system

usually has to evaluate many rewrite candidates. This promotes the

research on equality saturation [25, 33, 36], a technique using a cost

model to select rewrite candidates. Arfa also uses an e-graph to

find a partial set of rewrite candidates with the given rules, but we

empirically inspect the errors of selected rewrite candidates, which

has the potential to scale with new FP representations [17, 38].

Another progress Arfa makes is that it usually allows for the

generation of different rewrites for individual regimes, but other

systems [7, 23, 26] often produce a uniform rewrite substitution

for the whole D. Arfa substitutes an FP expression using rewrite

candidates inferred by combining the real-valued identities be-

fore building its e-graph, while some existing methods [23, 32, 37]

also leverage Taylor-based approximations. Recent RLIBM-based

techniques [1, 17] try to round math libraries with different FP

variants, and oracle-free program synthesis is also used to opti-

mize FP errors [39]. Integrating these approaches into Arfa is an

interesting direction to follow. Arfa also increases precision as

a complementary strategy. However, our rewrite search heuristic

does not intend to automatically tune precision like what exist-

ing autotuners [13, 27, 28] did. Recently, precision tuning is also

integrated into Herbie [29].

9 Conclusion

We introduce Arfa to reduce the errors of FP expressions. It first

leverages a preprocessing step and uses an algorithm to partition

the input domain of an FP expression, based on which the heuristic

to generate and search customized rewrites is developed. In ad-

dition to searching equivalent expressions, Arfa also considers

increasing precision as a complementary optimization. The results

demonstrate that Arfa exhibits lowermae and aae than Herbie and

NumOpt. For future tasks, we plan to generalize Arfa to handle

more complex scenarios like control constructs and parallelize its

execution to reduce the overhead. We also plan to add more rewrite

rules and integrate the RLIBM-based approaches [1, 17].
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