
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-023-05523-6

1 3

Hierarchical search algorithm for error detection
in floating‑point arithmetic expressions

Zuoyan Zhang1 · Jinchen Xu1 · Jiangwei Hao1 · Yang Qu1 · Haotian He1 ·
Bei Zhou1

Accepted: 25 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Scientific and engineering applications rely on floating-point arithmetic to approxi-
mate real numbers. Due to the inherent rounding errors in floating-point numbers,
error propagation during calculations can accumulate and lead to serious errors that
may compromise the safety and reliability of the program. In theory, the most accu-
rate method of error detection is to exhaustively search all possible floating-point
inputs, but this is not feasible in practice due to the huge search space involved.
Effectively and efficiently detecting maximum floating-point errors has been a chal-
lenge. To address this challenge, we design and implement an error detection tool for
floating-point arithmetic expressions called HSED. It leverages modified mantissas
under double precision floating-point types to simulate hierarchical searches from
either half or single precision to double precision. Experimental results show that
for 32 single-parameter arithmetic expressions in the FPBench benchmark test set,
the error detection effects and performance of HSED are significantly better than the
state-of-the-art error detection tools Herbie, S3FP and ATOMU. HSED outperforms
Herbie, Herbie+, S3FP and ATOMU in 24, 19, 27 and 25 cases, respectively. The
average time taken by Herbie, Herbie+, and S3FP is 1.82, 11.20, and 129.15 times
longer than HSED, respectively.

Keywords Floating-point arithmetic · Error detection · Dynamic analysis ·
Hierarchical search

1 Introduction

The floating-point type is an indispensable data type in computers that is widely
used in numerical and floating-point programs. These programs are widely used in
fields as diverse as human spaceflight, weather forecasting, gene sequencing, and

Zuoyan Zhang and Jinchen Xu these authors contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05523-6&domain=pdf

 Z. Zhang et al.

1 3

nuclear explosion simulations. Ensuring security and reliability is a critical issue for
floating-point programs. Due to the limited number of bits available in computers,
it is impossible to accurately represent infinite real numbers, resulting in inherent
floating-point errors [7]. In addition, the gradual propagation and accumulation of
floating-point errors in computations can have serious or even catastrophic conse-
quences, such as disrupting stock market indices [1], failing rocket launches [2], and
missile trajectories resulting in the death of soldiers [3]. In addition, deep learning
systems and probabilistic programming language systems are also susceptible to the
effects of floating-point errors. Therefore, the detection of floating-point errors is
crucial.

Direct analysis of floating-point programs is difficult and inefficient. Since float-
ing-point programs contain a large number of floating-point operations, and a series
of floating-point operations can be abstracted into a series of equivalent floating-
point arithmetic expressions [4], error detection for floating-point arithmetic expres-
sions is often much more effective, so this paper focuses on the error detection for
floating-point arithmetic expressions.

Methods of error detection include static analysis and dynamic analysis. Static analy-
sis uses the abstract semantics of numerical programs to approximate error bounds and
often results in higher than actual errors. Dynamic analysis calculates the actual value
under each input and the oracle (correct rounded value) under that input using a high
precision library, and compares to obtain the true error. This paper investigates dynamic
analysis methods. Many heuristic search algorithms have been developed by domes-
tic and international scholars for dynamic analysis, such as random sampling, atomic-
condition-based search (ACES) [5], binary guided random testing (BGRT) [6], Markov
Chain Monte Carlo (DEMC) [9] and local sensitive genetic algorithm (LSGA) [11].
Existing heuristic search algorithms have some drawbacks, such as random sampling
may miss the input that triggers the maximum error; ACES may generate false posi-
tives, i.e. the reported input does not trigger a large error; BGRT requires a predefined
search time to guide the search, and the length of the search time directly affects the
quality of the results, and so on. Therefore, it is a challenge to investigate an efficient
and effective search algorithm.

To address this challenge, this paper designs and implements a hierarchical search
algorithm for floating-point arithmetic expressions to search for the input that triggers
the maximum error and report the maximum error, and implements the error detection
tool HSED (Hierarchical search error detection) based on this algorithm, which enables
error detection for floating-point arithmetic expressions at user-specified intervals.

In summary, the main contributions of this paper are as follows:

• We introduce the concept of significant error and the starting search layer is
selected based on the presence or absence of significant error to balance detec-
tion effectiveness and performance.

• We design and propose a hierarchical search algorithm for half precision to dou-
ble precision three-layer and single precision to double precision two-layer simu-
lations with modified mantissa length in double-precision floating-point type.

• We design and implement an error detection tool, HSED.

1 3

Hierarchical search algorithm for error detection in…

• We extensively evaluate HSED on a selection of 32 single reference arithmetic
expressions from the FPBench and the results show significant advantages over
Herbie , S3FP and ATOMU.

Section 2 of this paper presents work related to floating-point error detection. Sec-
tion 3 introduces the basics knowledge of this paper, including floating-point errors,
error measures and significant errors. Section 4 introduces the HSED framework. Sec-
tion 5 details the core HSED algorithm and implementation. Section 6 analyses the
experiments performed in this paper and their results. Finally, the paper concludes.

2 Related work

In recent years, a great deal of research has been done on floating-point error detec-
tion, and this section mainly discusses the research relevant to our approach.

Many error detection methods explore heuristic search algorithms to find maxi-
mum errors, for example ATOMU [5] uses atomic-condition-based search (ACES)
to find the inputs that trigger the significant errors, the tool converts the search for
larger errors into a search for problems that trigger larger atomic state functions; S3FP
[6] employs binary guided random testing (BGRT) to search for maximum errors;
AutoRNP [9] uses the Markov Chain Monte Carlo (DEMC) algorithm to detect accu-
racy flaws, where the DEMC algorithm is based on the Differential Evolutionary (DE)
algorithm and Markov Chain Monte Carlo (MCMC) with the aim of searching for the
input that triggers the maximum error. The ultimate purpose of AutoRNP is for error
repair, and recently Oracle-free error repair methods have also attracted attention [20].

Based on the binary staking tool valgrind [10] can detect errors in floating-point
operations, error detection tools based on this tool include FPDebug [13], Ver-
rou [15] and Herbgrind [16]. FPDebug [13] is the first error detection tool to use
valgrind and it uses random tests to detect catastrophic errors and rounding errors
in floating-point programs; Verrou [15] uses the Monte Carlo algorithm (MCA) to
detect floating-point errors; Herbgrind [16] is used to locate the source of errors in
large programs by randomly sampling and calculating high precision values using
the MPFR high precision library, and helps users to find suspicious floating-point
code in large floating-point programs by dynamically tracking the dependencies
between program operations and outputs. Both Herbie [19] and Herbgrind [16]
are randomly tested for maximum error. Herbie is an error detection and precision
optimization tool that first locates error-prone regions by random testing and then
improves precision by rewriting expressions in error-prone regions. Herbgrind can
be combined with Herbie to improve suspect floating-point code in large floating-
point programs by using the expressions generated by Herbgrind as input to Herbie.

Another important branch of error detection is static analysis. It does not require
program execution, but instead approximates error bounds through theoretical concepts
such as abstract semantic analysis [22], interval operations [23], affine operations [24],
and symbolic execution [26], the error results often exceed the actual errors, so static
analysis tools [12, 14, 17, 18, 21, 25, 27, 28, 32] attempt to tighten error bounds.

 Z. Zhang et al.

1 3

In summary, we find that existing heuristic search algorithms have the follow-
ing shortcomings, (1) random testing has a high probability of missing the input
that triggers the maximum error, (2) binary guided random testing requires a pre-
defined long search time, the length of which has a large impact on the results, and
(3) atomic-condition-based search can generate error false alarms, reported inputs
do not trigger large errors, etc. Compared to static analysis tools, HSED is dynamic
and the maximum error found is not the approximate error. Compared to existing
search algorithms, HSED (1) for the first time uses low precision inputs below the
precision of the original data type to guide the search, (2) the low precision layer
locates the error hotspot interval and the high precision layer densely samples this
interval greatly improving effects, and (3) there are no error false alarms.

3 Background knowledge

The main task of this paper is to detect floating-point errors, the following will intro-
duce related concepts and basic knowledge.

3.1 Floating‑point representation

Computers use finite-precision floating-point numbers to approximate infinite real
numbers. Floating-point operations are also an approximate implementation of real
number operations. Many standards for floating-point numbers have been published
in the past. The most widely used is the IEEE 754 standard. The IEEE 754 standard
specifies that a floating-point number consists of sign, exponent and mantissa bits,
the normalized representation is: f = (−1)S ×M × 2E , where S is the sign bit and
S ∈ {0, 1} occupies one bit to represent the positive or negative of the floating-point
number. If S = 0 , it represents a positive number and if S = 1 , it represents a nega-
tive number, M = d0.d1d2...dp−1 represents the mantissa bits, which is the effective
number of f, p is the length of the effective number, which represents the precision
of the floating-point number. E = e − bias represents the exponent, where e is an
unsigned integer of e bits, and bias = 2e−1 − 1 . The most commonly used floating-
point types are double and float, and the sign, exponent and mantissa occupy 1 (1),
11 (8), and 52 (23) bits, respectively. Figure 1 shows the float and double formats.

(8bits) (23bits)

(11bits) (52bits)
Double

Sign Exponent Mantissa

Float

Fig. 1 IEEE 754 common floating-point formats

1 3

Hierarchical search algorithm for error detection in…

3.2 Error measurement standard

Floating-point error detection requires the use of error measures. The most com-
monly used error measures are absolute and relative error, and for floating-point
errors there are also ULP and Bits error. Given an arithmetic expression f(x), and
assuming that the oracle obtained by the computer at x = x0 is represented by f (x0) ,
with the computed value represented by f̃ (x0) , the absolute error (errorabs) and the
relative error (errorrlt) of the expression are defined as shown in Eq. 1 and 2.

Floating-point numbers are non-uniformly distributed, with more numbers con-
centrated near 0. This non-uniform distribution leads to inconsistency in the meas-
urement of absolute error, and can lead to division by zero errors when measuring
relative error. If the result is NaN or ±∞ , neither absolute nor relative error can
be effectively calculated. Therefore, the error of floating-point numbers is generally
measured by ULP(unit in the last place). In this paper, ULP is defined consistently
with Goldberg’s definition [8], and for double-precision floating-point numbers,
ULP is defined as in Eq. 3.

For a real number x, ULP(x) represents the distance between the two closest float-
ing-point numbers to x. The ULP error(errorulp) of the expression f(x) at x = x0 can
be defined as shown in Eq. 4.

The number of floating-point numbers between the oracle and the computed value
can be used to obtain the error in Bits (errorbits), which is defined as shown in Eqs. 5
and 6.

FPnumber represents the number of floating-point numbers between the oracle f (x0)
and the computed value f̃ (x0) , while errorbits represents the difference in Bits between
the oracle and the computed value. For example, there are 2251799813685249 float-
ing-point numbers between the double-precision floating-point numbers 1.0 and 2.0,

(1)errorabs =
||f̃ (x0) − f (x0)

||.

(2)errorrlt =
|||||

f̃ (x0) − f (x0)

f (x0)

|||||
.

(3)For x ∈ ℝ,ULP(x) =

⎧
⎪
⎨
⎪
⎩

2k−52, if �x� ∈
�
2k, 2k+1

�
, k ∈ [−1022, 1023] ∩ ℤ.

2−1074, if �x� ∈
�
0, 2−1022

�
.

(4)errorulp(f (x0)) =
|||||

f̃ (x0) − f (x0)

ULP(f (x0))

|||||
.

(5)
FP

number

{
f (x0), f̃ (x0)

}
=
|||
{
a
i
∈ � |min(f (x0), f̃ (x0)) ≤ a

i
≤ max(f (x0), f̃ (x0)))

}|||.

(6)errorbits
{
f (x0), f̃ (x0)

}
= log2

(
FPnumber

{
f (x0), f̃ (x0)

})
.

 Z. Zhang et al.

1 3

and taking the log2 of 2251799813685249 gives 51, indicating that there is a differ-
ence of 51 bits between 1.0 and 2.0, with an errorbits of 51. Since double-precision
floating-point numbers have only 64 bits, the errorbits between any two floating-point
number will be greater than or equal to 0 and less than 64. Compared to absolute
error, Bits error can maintain measurement consistency and avoid by zero error
caused by relative error, and also support NaN and ±∞

This paper uses the standard ULP error, with the oracle computed using the
MPFR [31] high-precision library at a precision of 128 bits.

3.3 Significant error

In this paper, the significant error is defined as shown in Eq. 7, where � is the error
threshold, indicating the maximum allowed error, and errorulp(f (x0)) is the ULP
error of the function f(x) under the input of x0 . If errorulp(f (x0)) exceeds the set
threshold � , it is considered that there is a significant error, otherwise, there is no
significant error. The concept of significant error is used to determine whether an
error hotspot or error hotspot interval is located in the low precision layer of the
hierarchical search. If no significant error is detected, it means that there is no input
or small interval that triggers a larger error is found in the low precision layer and
the input precision must be increased to improve the detection effect.

4 HSED framework

The most accurate detection method for double precision data type is to exhaust all
 264 floating-point numbers, which is not feasible in reality due to the large search
space, while half precision is only 16 bits and it is feasible to exhaust all half preci-
sion floating-point numbers for a total of 216 numbers. The error distribution of the
floating-point program is unchanged as the input precision increases, as shown in
Fig. 2a–c, while the floating-point error becomes more and more accurate as the
input precision increases, so we can use low-precision inputs to locate the error hot-
spots, and then use high-precision inputs to increase the sampling of the error hot-
spot interval to obtain more accurate error results, through this kind of hierarchical
search can be a good balance between detection effect and performance.

In order to achieve error detection using a hierarchical search below the original
input precision for floating-point arithmetic expressions, this paper designs the error
detection tool HSED for floating-point arithmetic expressions as shown in Fig. 3. It
uses a floating-point arithmetic expression f(x) as input and a user-specified detection
interval as a parameter, and detects the maximum error within the user-specified inter-
val and reports the corresponding input x through two modules: automatic generation

(7)signif icant error =

⎧
⎪
⎨
⎪
⎩

1, if errorulp(f (x0)) ≥ 𝜖.

0, if errorulp(f (x0)) < 𝜖.

1 3

Hierarchical search algorithm for error detection in…

of a high-precision version of the code and detection by a hierarchical search algo-
rithm.The detection of the hierarchical search algorithm is the core work of this paper.

• The module for automatic generation of high-precision version code is the pre-
liminary work for the computation of errors by performing syntactic, lexical and
semantic analysis of floating-point arithmetic expressions, parsing them into an
Abstract Syntax Tree (AST), using MPFR high-precision version equivalent sub-
stitution for the nodes of the tree including quadratic operations, function opera-
tions and variables, and finally recursively generating the high-precision version
code of the expressions.

• The hierarchical search algorithm module is the core of the error detection work,
first through the preprocessing stage to determine whether there is a significant
error, if there is a significant error to carry out a two-layer search, otherwise
carry out a three-layer search, and finally output the maximum error of the arith-
metic expression in the detection interval and the corresponding input.

It should be noted that the half precision and single precision data types used in
this paper are achieved by modifying the mantissa bits of the double precision

Fig. 2 The error distribution graphs of the predatorPrey benchmark in three data types are shown, where
the detection interval is [2,3], the x axis represents the input range, and the y axis represents the ULP
error. a Is the exhaustive under half precision, b is uniform sampling with 100,000 samples under float
type, and c is uniform sampling with 100,000 samples under double type

f(x)

Preprocessing

Significant
error

Half
precision

Single
precision

Double
precision

Single
precision

Double
precision

Error

N

Y

Three-layer search

Two-layer search

Hierarchical search algorithmGenerating
high-precision
version code
automatically

Generating
high-precision
version code
automatically

Fig. 3 HSED framework

 Z. Zhang et al.

1 3

floating-point type, manipulating the first 10 and 23 mantissa bits, respectively, and
are not really the half precision and single precision data types used, as the detection
interval is limited by its exponent bit size when used directly, and the term is quoted
in this paper for distinction.

5 HSED implementation

This section details the implementation of HSED, including the two modules of
automatic code generation for high-precision versions of floating-point arithmetic
expressions and the hierarchical search algorithm.

5.1 Generating high‑precision version code automatically

HSED supports arbitrary floating-point arithmetic expressions, including quadratic
operations and basic function operations (e.g. exponential, logarithmic, trigonomet-
ric, square, hyperbolic functions). HSED decomposes expressions into the four basic
elements of variables, numbers, functions and binary operators for processing. HSED
parses the floating-point arithmetic expression into an AST. The root and middle
nodes of the AST are binary operators (e.g. addition, subtraction, multiplication, divi-
sion), and the leaf nodes can be numbers, variables, or functions. When a leaf node is
a function, it extends a number of links to other trees corresponding to the individual
parameters of the function being represented. The root and middle nodes of the AST
tree are replaced using equivalent MPFR high-precision operations, and the leaf nodes
are replaced using the variable type of the MPFR library, with the precision set to 128
bits. The final recursion can generate equivalent MPFR high-precision versions of the
code, which are used to obtain the oracle of the expression and to compute the error
using the oracle. For example, for the expression x2 + sinx + 1.0 , its AST and the AST
after replacement by MPFR high-precision operations are shown in Fig. 4.

5.2 Preprocessing

The preprocessing stage only operates on the first 10 mantissa bits to simulate “half
precision", with a small time overhead to exhaust all floating-point detection at this

+

* +

x x sin1

x

mpfr_add

mpfr_mul mpfr_add

mpfr_sinx x

x

1

64bit 128bit

Fig. 4 Replace expression node with MPFR

1 3

Hierarchical search algorithm for error detection in…

layer. For example, there are 1,054,273 floating point numbers in the interval [0,100]
at the “half precision" layer, and the time overhead for HSED to exhaust all floating
point numbers if this size to detect errors is about 1.8s, while there are only 13,603
floating point numbers in the interval [0.01,100], and HSED takes 0.8s. The float-
ing-point number in the interval [0,100] is two orders of magnitude larger than the
floating-point number in the interval [0.01,100], which is in accordance with the law
of floating-point distribution, the closer the floating-point number is to 0, the denser
the distribution, the detection interval is far from 0 even though the interval is large,
but the number of floating-point numbers is also very small, for example, in the
[0.01,1,000,000] there are only 23,805 floating-point numbers. So HSED performs
exhaustive detection of the “half precision" layer in the preprocessing stage.

During the preprocessing stage, HSED exhaustively detects all floating-point num-
bers within the test interval to obtain a maximum errorulp and an input x that triggers
the error, if errorulp < 𝜖 , it means that there is no significant error in the expression
within that interval, otherwise, there is a significant error. The concept of significant
error is used to solve the problem that it is difficult to locate the error hotspots or
error hotspot regions even if the “half precision” layer is exhaustive. For example, in
the NMSEproblem341 benchmark in the FPBench, the expression f (x) = 1−cosx

x2
 has

a larger error near x = 0 , this is because when x is close to 0, the difference between
cosx and 1 is very small, and the subtraction operation will introduce a large amount
of rounding error, x2 is very close to 0 and is more likely to introduce truncation
error, causing a very large error in the calculation result of the whole expression, and
may lead to numerical instability (such as overflow or underflow). If the user detects
the maximum error of this expression in the interval [0.001,2], the error near 0 will
definitely be larger, and the error hotspot must be near the position near the left end-
point x = 0.001 of the interval, where a significant error will appear. From Fig. 5a
and b, it can be seen that there is a significant error in the expression within the inter-
val [0.001,2], and although only 11,241 floating-point numbers were exhaustively
searched in the “half precision” layer, the region of the error hotspot(indicated by the
green box) can still be effectively located due to the existence of significant errors.

However, for other types of expression, there may be no significant error within
the detection interval, and the overall error may be small. For example, in the preda-
torPrey benchmark in FPBench, the arithmetic expression is f (x) = 4x2

1+(
x

1.11
)2

 , assum-

ing that the detection interval is still [0.001,2], Fig. 6a shows that there is no signifi-
cant error in the expression within the interval [0.001,2], and the overall error is
small. However, due to the exhaustive search of only 11,241 floating-point numbers
in the “half precision" layer, the input of floating-point numbers is sparse and cannot
locate the error hotspot, the error hotspot should be near the pink circle in Fig. 6a,
but the “half precision” layer locates it near the green circle in Fig. 6b. For expres-
sions without significant errors, increasing the number of sample points can effec-
tively locate the error hotspot, and setting the starting search layer to the “single
precision" layer can solve this problem.

In summary, in the preprocessing stage, HSED simulates “half precision" by
operating on the first 10 bits of the mantissa of double precision floating-point types,
and it exhaustively searches all floating-point numbers in the “half precision" layer

 Z. Zhang et al.

1 3

to detect if there is a significant error. HSED sets the significant error to 100ULP, if
there is a significant error, it performs a three-layer search from “half precision" to
double precision, otherwise it performs a two-layer search from “single precision"
to double precision. It should be noted that since the preprocessing stage already
exhaustively detects the “half precision" layer, the results can be reused in the “half
precision" layer of the three-layer search, saving the search time for the “half preci-
sion" layer. HSED sets the interface for users to change the significant error size, too

Fig. 5 The error distribution diagram of f (x) = 1−cosx

x2
 , x axis represents the input range and y axis rep-

resents the ULP error. Figure 5a shows the error distribution with 300,000 uniformly sampled inputs
in double precision, Fig. 5b shows the error distribution with all floating-point numbers exhaustively
searched in the “half precision" layer

Fig. 6 The error distribution diagram of f (x) = 4x2

1+(
x

1.11
)2

 , x axis represents the input range and y axis rep-
resents the ULP error. a Shows the error distribution with 300,000 uniformly sampled inputs in double
precision, b shows the error distribution with all floating-point numbers exhaustively searched in the
“half precision" layer

1 3

Hierarchical search algorithm for error detection in…

large a significant error setting is more likely to enter the two-layer search, sampling
more points than the three-layer search, the detection effect will not be worse but the
performance will be affected. Significant error sets too small are more likely to enter
the three-layer search, which is limited by the fact that the “half precision" layer in
the three-layer search may not locate the actual error hotspots and detection may be
poor, but performance is faster than in the two-layer search.

5.3 Hierarchical search algorithm

The hierarchical search algorithm of HSED includes a three-layer search algorithm
from “half precision" to double precision and a two-layer search algorithm from
“single precision" to double precision.

 Z. Zhang et al.

1 3

If there is a significant error in the preprocessing stage, the three-layer
search algorithm described in Algorithm 1 is executed. First, the function
convert_to_half should be executed to set the last 42 bits of the two floating-point
numbers at the interval endpoints to 0, converting them to “half precision". The
for loop in lines 3-10 exhaustively detects all float numbers in the “half precision"
layer, note that in line 9, we only exhaust the first 10 bits of the mantissa bits, so
the offset value is 0 x 40000000000 each time. By exhaustively detecting all float-
ing-point numbers in the “half precision" layer, we can determine the maximum
error and the corresponding input that triggers the error. Then, the

convert_to_f loat function in line 11 is executed to operate on the input and set
the extra 13 mantissa bits to get a tiny interval in the “single precision" layer. The
for loop in lines 12-19 exhaustively detects all float numbers in the tiny interval
in the “single precision" layer. Note that in line 18, we operate on the first 23 bits
of the mantissa, so the offset value is 0x20000000 each time. By exhaustively
detecting all floating-point numbers in the tiny interval in the “single precision"
layer, we can update the maximum error and the corresponding input. Similarly,
the last 29 mantissa bits of the input obtained in the previous layer are operated
on in line 20 to obtain a tiny interval in the double precision layer. The for loop in
lines 21-27 detects in the double precision layer. Unlike the previous two layers,
exhaustive search is not used in the double precision layer because it operates on

1 3

Hierarchical search algorithm for error detection in…

29 bits of the mantissa, and the time cost of exhaustive search is too high, so we
choose to generate 100,000 random numbers to detecting.

If there is no significant error in the preprocessing stage, the two-layer search
algorithm described in Algorithm 2 is executed, where lines 3-9 and 11-17 cor-
respond to the “single precision" and double precision layers, respectively. Unlike
the three-layer search, the two-layer search starts from the “single precision"
layer. As the “single precision" layer requires 23 mantissa bits to be processed,
and exhaustive search is too-consuming, so random search is used for this layer
instead of an exhaustive search.

In summary, whether it is the three-layer search or the two-layer search, the
lowest layer is used to quickly locate the error hotspot with lower precision, as
shown in Fig. 7aand 8a, while the higher layers are used to obtain a very small
interval of the error hotspot and sampling within that interval to obtain the most
accurate error results possible, as shown in Figs. 7b, 8b. The sampling within
the green boxes in Figs. 7d and 8c is dense, which is exactly the effect achieved
by hierarchical search. By quickly locating the error hotspot with lower preci-
sion, and intensively sampling and detecting the error hotspot region in the
higher precision layer, the maximum error can be effectively detected quickly and
efficiently.

6 Experimental results

HSED is completely implemented in the C++ language, using over 1100 lines
of code for automatically generate high-precision versions of floating-point arith-
metic expressions, and over 700 lines of code to implement a hierarchical search
algorithm for error detection. The experimental environment is based on the
Ubuntu 20.04.4 LTS operating system with the Linux 5.14.0-1051-oem kernel,
running on an Intel Xeon E5-6230 v4 CPU. HSED generates a cpp program that
calls MPFR for error measurement, which is compiled using GCC 9.4.0 with the
options "-lm -lmpfr". To verify the effectiveness of HSED in detecting errors in
floating-point arithmetic expressions, this paper evaluates its effects and perfor-
mance on 32 single-parameter arithmetic expressions from the FPBench bench-
mark suite, and compares the results with those achieved by the state-of-the-art
error detection tools Herbie, Herbie+, S3FP and ATOMU.

6.1 Test case

The benchmark test information in this paper is shown in Table 1. The FPBench
benchmark test set contains a total of 46 single-parameter arithmetic expressions,
32 of which are selected as test objects for this study. Fourteen benchmarks are
excluded because they contain loops, conditionals or repeated expressions. The
32 benchmark expressions are divided into two categories: general expressions
(12) and function operation expressions (20). The detection interval is set

 Z. Zhang et al.

1 3

according to the default range provided by FPBench. If FPBench does not pro-
vide a default interval, the interval [0.01,100] is used, which is the usual interval.

6.2 Precision results and analysis

The HSED is compared with the state-of-the-art error detection tools, including
Herbie, Herbie+, S3FP and ATOMU.

Fig. 7 The distribution of three-layer search errors on the interval [0.001,2] for the function
f (x) =

1−cosx

x2
 , a–c represent error distribution for different layers, d represents error distribution for the

overall three-layer search

1 3

Hierarchical search algorithm for error detection in…

6.2.1 Comparison with Herbie and Herbie+

Herbie is an error detection and precision optimization tool that finds the maximum
error by randomly sampling 8000 input points in the error detection module. To
ensure fairness in the comparison, the number of input points for Herbie’s random
sampling is increased to 100,000, referred to as Herbie+. Figure 9 shows the maxi-
mum error test results of HSED compared to Herbie and Herbie+. Since the output
of Herbie and Herbie+ is in Bits error, the comparison with these two tools is in Bits
error.

HSED performs significantly better than Herbie. Among the 32 benchmark tests,
HSED detects a maximum error higher than that of Herbie in 24 cases, while only
in a few cases the results are lower of equal to Herbie (less than 3 and equal to 5).
HSED performs worse than Herbie in three benchmarks, sqroot, NMSEsection311
and predatorPrey, For these benchmarks, increasing the number of random search
sampling input points can improve the detection effect. For sqroot, when improving
the sampling points of the random search to 150,000, the same effect as Herbie can
be achieved. Therefore, for benchmarks where HSED does not outperform Herbie,
optimization can be achieved by increasing the number of sampling points.

In the precision comparison test with Herbie+, HSED also performs significantly
better than Herbie+. The number of cases where it performs better, equal to, and
worse than Herbie+ is 19, 8, and 5, respectively. This confirms that increasing the
number of sampling points can indeed improve detection effect, but the downside is
reduced performance.

6.2.2 Comparison with S3FP

S3FP is an error detection tool that uses binary-guided random testing (BGRT)
and we define its TIMEOUT parameters as 1000, 10,000 and 50,000, respectively.
Table 2 shows the maximum error test results of HSED compared to S3FP . The
output of S3FP is in maximum relative error, so the comparison with the S3FP tool
is in terms of relative error.

Fig. 8 The distribution of two-layer search errors on the interval [0.001,2] for the function
f (x) =

4x2

1+(
x

1.11
)2

 , a, b represent error distribution for different layers, c represents error distribution for the
overall two-layer search

 Z. Zhang et al.

1 3

Additionally, S3FP could not complete 14 benchmarks due to time constraints
and we mark these results as NA. The results show that both detection effects and
efficiency are significantly better than the S3FP tool. With the S3FP TIMEOUT
set to 1000, HSED has 29 benchmarks (including NA) that outperform S3FP, and
still has 27 benchmarks that outperform the S3FP as the TIMEOUT increases. For
benchmarks where S3FP cannot complete within the given time budget, we also try
increasing the TIMEOUT parameter, but in most cases there are still no effective
results. The experimental data in Table 2 that as the search time of S3FP gets longer
the results get better, but that

increasing the search time on top of a larger search time has a weak improvement
on the results, for example changing TIMEOUT from 10,000 to 50,000 results in a
smaller improvement.

Table 1 Test set information

No FPBench D No FPBench D

1 sqroot [0,1] 17 NMSEproblem341 [0.01,100]
2 sqrt_add [1,1000] 18 NMSEexample38 [0.01,100]
3 exp1x [0.01,0.5] 19 NMSEproblem334 [0.01,100]
4 exp1x_log [0.01,0.5] 20 NMSEproblem333 [0.01,100]
5 NMSEexample37 [0.01,100] 21 NMSEproblem331 [0.01,100]
6 NMSEproblem336 [0.01,100] 22 NMSEexample36 [0.01,100]
7 NMSEexample39 [0.01,100] 23 NMSEexample35 [0.01,100]
8 NMSEproblem341 [0.01,100] 24 NMSEexample34 [0.01,100]
9 NMSEsection311 [0.01,100] 25 NMSEexample31 [0,100]
10 NMSEproblem345 [0.01,100] 26 test05_nonlin1_r4 [1.00001,2]
11 NMSEproblem337 [0.01,100] 27 test05_nonlin1_test2 [1.00001,2]
12 verhulst [0.1,0.3] 28 intro-example-mixed [1,999]
13 predatorPrey [0.1,0.3] 29 sineOrder3 [-2,2]
14 logexp [0.01,8] 30 bsplines3 [0,1]
15 sine [− �

2
,�
2
] 31 NMSEexample310 [0.001,1]

16 carbonGas [0.1,0.5] 32 NMSEproblem343 [0.001,1]

Fig. 9 Comparison of the maximum error (higher is better). x axis is the benchmark numbers; y axis is
log-2 scaled

1 3

Hierarchical search algorithm for error detection in…

6.2.3 Comparison with ATOMU

We compare HSED with ATOMU and the experimental data are shown in Table 3.
We set the test interval to [− 100, 100] by default, which is a common interval and
ATOMU for most of the benchmark reported test cases all fall into this interval, only
the bench 6, 18, 19, 21–23 report a large test case, for these 6 we set the test interval
to [0,+∞] and [−∞,+∞] , the purpose is also to cover the test cases reported by
ATOMU. HSED has 25 benchmarks that detect higher errors than ATOMU, which
are bolded in Table 3. Average maximum relative error HSED is 5.11E+14 higher
than ATOMU, with an average improvement of 5.50E+14. But the performance of
ATOMU is far better than HSED, with performance 158x better than HSED. As
ATOMU relies on condition numbers to localize input values of significant errors
and does not need to compute oracles, its overhead is very small.

6.3 Performance results and analysis

For performance testing, to avoid the influence of software and hardware, we exe-
cute the program ten times, removing the longest and shortest execution times, and
finally calculate the average execution time of eight runs as the time cost of a single
test. When comparing performance with the S3FP, we compare it with its TIME-
OUT of 10,000, as the S3FP performs better in terms of accuracy at this magnitude.
Figure 10 shows the time cost in seconds for HSED and three other tools. Equation 8
is used in this paper to calculate the average time cost of all benchmarks, where n
is the number of benchmarks, and Eq. 9 is used to calculate the time radio between
different tools. As there are 14 benchmarks with no results in S3FP, we set n to 18
when calculating the average time cost of S3FP. Using Eq. 8 and 9, the time ratio
of HSED to Herbie, Herbie+ and S3FP is calculated to be 1.82, 11.20, and 129.15,
respectively. The larger the time ratio, the better the performance of HSED.

The benchmark 15 and 29 time overheads are greater, because in section 5.2,
it is mentioned that there are a large number of floating-point numbers near 0, if
the detection range includes 0, the preprocessing phase will take longer . If there
is no significant error, a two-layer search is performed, and each layer requires ran-
dom search to generate sample points, the number of sample points is more than
that of the three-layer search, which reduces the performance. Overall, HSED has
a fast performance. For example, 17 benchmarks have a time cost of less than 1000

(8)average_time =

∑n

i=1
timei

n
.

(9)radio_time =
average_timeother_tools

average_timeHSED
.

 Z. Zhang et al.

1 3

milliseconds. In the performance comparison test with Herbie+, after increasing the
sampling points of Herbie+ to 100,000, HSED outperforms Herbie+ for all bench-
marks. S3FP itself has to define a longer time cost to guide the search, so the perfor-
mance of HSED is much better than that of S3FP.

Since the comparison interval with ATOMU is different from Herbie and S3FP,
and ATOMU itself does not compute oracles, the performance comparison is not
shown here, and the specific data can be seen in section 6.2.3.

Table 2 The comparative
accuracy between HSED and
S3FP. The size of the S3FP
TIMEOUT parameter is given
in parentheses

No HSED S3FP(1000) S3FP(10000) S3FP(50000)

1 3.09E−16 2.74E-16 3.00E-16 3.13E-16
2 2.72E−16 NA NA NA
3 1.09E−14 1.09E−16 1.10E−16 1.10E−16
4 2.52E−16 NA NA NA
5 8.62E−15 NA NA NA
6 6.73E−14 NA NA NA
7 5.59E−12 2.93E−13 1.84E−12 2.07E−12
8 3.58E−03 1.09E−16 1.10E−16 1.10E−16
9 8.59E−15 NA NA NA
10 7.79E−12 2.87E−16 2.97E−16 3.05E−16
11 1.49E−12 NA NA NA
12 1.66E−16 1.91E−16 2.09E−16 2.10E−16
13 3.15E−16 2.07E−16 2.10E−16 2.15E−16
14 4.99E−13 NA NA NA
15 2.74E−16 2.23E−16 2.99E−16 3.03E−16
16 2.89E−16 2.98E−16 3.05E−16 3.41E−16
17 3.58E−03 1.09E−16 1.10E−16 1.10E−16
18 5.58E−04 1.27E−14 1.30E−14 6.59E−14
19 2.13E−13 NA NA NA
20 1.54E−12 2.60E−14 2.88E−14 2.88E−14
21 1.68E−14 6.22E−15 6.28E−15 6.49E−15
22 4.76E−14 NA NA NA
23 9.57E−15 NA NA NA
24 3.58E−03 NA NA NA
25 3.27E−14 NA NA NA
26 4.80E−12 8.20E−17 8.30E−17 8.30E−17
27 1.66E−16 8.20E−17 8.30E−17 8.30E−17
28 1.67E−16 5.73E−17 1.07E−16 1.09E−17
29 3.73E−16 2.19E−16 2.80E−16 2.80E−16
30 2.19E−16 1.64E−16 1.64E−16 1.66E−16
31 1.11E−13 NA NA NA
32 4.57E−14 NA NA NA

1 3

Hierarchical search algorithm for error detection in…

7 Conclusion and future work

This paper proposes and implements an algorithm that uses hierarchical search to
detect the maximum error of floating-point arithmetic expressions, and implements
the error detection tool HSED. The core idea of HSED is to use the lower preci-
sion below the original input precision to guide the search, quickly locate the error

Table 3 HSED vs ATOMU: Error and time overhead data

No. D RelErr Time(s)

HSED ATOMU Improvement HSED ATOMU

1 [− 100,100] 3.07E−13 2.11E−01 − 2.11E−01 4.124 0.054
2 [− 100,100] 2.71E−16 NA 2.71E−16 3.232 0.03
3 [− 100,100] 1.00E+00 2.52E−02 9.75E−01 6.507 0.024
4 [− 100,100] 2.75E−16 5.41E−17 2.21E−16 19.056 0.055
5 [− 100,100] 1.00E+00 2.52E−02 9.75E−01 5.662 0.032
6 [0,+∞) 6.10E+01 9.30E+01 − 3.20E+01 22.222 0.048
7 [− 100,100] 2.30E+00 3.10E−01 1.99E+00 1.859 0.047
8 [− 100,100] 1.00E+00 1.33E−01 8.67E−01 1.559 0.049
9 [− 100,100] 5.00E−01 9.93E−02 4.00E−01 5.491 0.032
10 [− 100,100] 1.00E+00 1.00E+00 0.00E+00 4.087 0.067
11 [− 100,100] 3.60E+16 1.84E+16 1.76E+16 5.261 0.031
12 [− 100,100] 3.48E−13 9.91E−02 − 9.91E−02 2.258 0.02
13 [− 100,100] 3.48E−13 1.23E−16 3.47E−13 2.36 0.04
14 [− 100,100] 1.88E−02 2.15E−16 1.88E−02 5.69 0.038
15 [− 100,100] 2.09E−12 1.39E+00 − 1.39E+00 5.09 0.037
16 [− 100,100] 1.20E−13 2.07E−02 − 2.07E−02 3.823 0.029
17 [− 100,100] 1.00E+00 1.33E−01 8.67E−01 1.504 0.053
18 [0,+∞) 2.47E+00 9.93E−01 1.47E+00 24.915 0.046
19 (−∞,+∞) 1.17E+01 2.50E−01 1.14E+01 6.911 0.038
20 [− 100,100] 1.55E−12 2.62E+05 − 2.62E+05 2.803 0.05
21 (−∞,+∞) 1.00E+00 5.89E−02 9.41E−01 3.707 0.037
22 [0,+∞) 4.43E+00 1.29E−02 4.41E+00 2.61 0.031
23 (−∞,+∞) 1.00E+00 7.95E−17 1.00E+00 27.192 0.07
24 [− 100,100] 1.00E+00 1.33E−01 8.67E−01 1.812 0.068
25 [− 100,100] 3.27E−14 5.00E−16 3.22E−14 2.934 0.034
26 [− 100,100] 1.60E−12 2.22E−16 1.60E−12 2.328 0.037
27 [− 100,100] 6.65E−17 0.00E+00 6.65E−17 1.998 0.03
28 [− 100,100] 8.59E−17 0.00E+00 8.59E−17 2.317 0.026
29 [− 100,100] 9.99E−11 3.89E−02 − 3.89E−02 2.73 0.035
30 [− 100,100] 2.17E−16 NA 2.17E−16 1.931 0.032
31 [− 100,100] 1.00E+00 1.00E+00 0.00E+00 15.736 0.061
32 [− 100,100] 1.00E+00 3.27E−01 6.73E−01 8.958 0.042
Average 1.12E+15 6.12E+14 5.50E+14 6.5208 0.04134

 Z. Zhang et al.

1 3

hotspots, and use the high precision layer to increase the sampling of the extremely
small intervals that cause the error hotspots to obtain more accurate error results.
Future work includes mainly expanding HSED’s support for multi-parameter float-
ing-point arithmetic expressions and parallelizing HSED to further improve perfor-
mance. Given the slow performance of the MPFR library, some other scalable preci-
sion library may be used in the future to replace MPFR [29, 30].

Author contributions ZZ and JX were responsible for the methodology, implementation and writing; YQ
and HH were responsible for some of the experiments; JH was involved in the review and supervision;
and BZ was involved in the editing, review and supervision.

Funding Supported by the Open Project Program of the State Key Laboratory of Mathematical Engineer-
ing and Advanced Computing. Fund No. 2023B02.

Data availability The datasets used for the experiments are benchmark datasets. The experimental data
can be reproduced in the github open source address.

Code availability The github open source address will be included here when the paper is accepted.

Declarations

Conflict of interest The authors declare no competing interests.

Ethics approval Not applicable.

References

 1. Kevin Q (1983) Ever had problems rounding off figures. This stock exchange has. The Wall Street J
1983:37

 2. Jacques-Louis L, Lennart L, Jean-Luc F et al (1996) Ariane 5 flight 501 failure report by the inquiry
board. European space agency Paris

 3. Robert S (1992) Roundoff error and the Patriot missile. SIAM News 25(4):11
 4. Xia Y, Guo S, Hao J, Liu D, Xu J (2020) Error detection of arithmetic expressions. J Supercomput

77:5492–5509. https:// doi. org/ 10. 1007/ s11227- 020- 03469-7
 5. Daming Z, MuHan Z, Yingfei X, Zhoulai F, Lu Z, Zhendong S (2019) Detecting floating-point

errors via atomic conditions. In: Proceeding of the 47th ACM on Programming Languages (POPL
2020). Association for Computing Machinery, New York, NY, USA, vol 4, pp 1–27. https:// doi. org/
10. 1145/ 33711 28

Fig. 10 The performance comparison among HSED and the other three tools (lower is better). x axis is
benchmark numbers; y axis is log-2 scaled, the unit is second

https://doi.org/10.1007/s11227-020-03469-7
https://doi.org/10.1145/3371128
https://doi.org/10.1145/3371128

1 3

Hierarchical search algorithm for error detection in…

 6. Wei-fan C, Ganesh G, Zvonimir R, Alexey S (2014) Efficient search for inputs causing high floating-
point errors. In: Proceeding of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2014). Association for Computing Machinery, New York, NY, USA,
vol 49, pp 43–52. https:// doi. org/ 10. 1145/ 26929 16. 25552 65

 7. Qi H, Xu J, Guo S (2018) Detection of the maximum error of mathematical functions. J Supercom-
put 74:6275–6290. https:// doi. org/ 10. 1007/ s11227- 018- 2552-x

 8. What GD, Arithmetic ECSSKAF (1991) ACM Comput Surv 23:5–48. https:// doi. org/ 10. 1145/
103162. 103163

 9. Xin Y, Liqian C, Xiaoguang M, Tao J (2019). In: Proceeding of the 46th ACM on Programming
Languages (POPL 2019). Association for Computing Machinery, New York, NY, USA, vol 3, pp
1–29. https:// doi. org/ 10. 1145/ 32903 69

 10. Nicholas N, Julian S (2007) Valgrind: a framework for heavyweight dynamic binary instrumenta-
tion. Sigplan Not SIGPLAN 42:89–100. https:// doi. org/ 10. 1145/ 12734 42. 12507 46

 11. Daming Z, Ran W, Yingfei X, Lu Z, Zhendong S, Hong M (2015) A genetic algorithm for detecting
significant floating-point inaccuracies. In: Proceeding of the 37th International Conference on Soft-
ware Engineering (ICSE 2015). IEEE Press, vol 1, pp 529–539

 12. Earl T. B, Thanh V, Vu L, Zhendong S (2013) Automatic detection of floating-point exceptions. In:
Proceeding of the 40th ACM on programming languages (POPL 2013). Association for Computing
Machinery, New York, NY, USA, vol 48, pp 549–560. https:// doi. org/ 10. 1145/ 24290 69. 24291 33

 13. Florian B, Andreas H, Sebastian H (2012) A dynamic program analysis to find floating-point accu-
racy problems. In: Proceeding of the 23th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2012). Association for Computing Machinery, New York, NY,
USA, vol 47, pp 453–462. https:// doi. org/ 10. 1145/ 22540 64. 22541 18

 14. Al B, Ken B, Ben C, Andy C, Bryan F, Seth H, Charles H, Asya K, Scott M, Dawson E (2010) A
few billion lines of code later: using static analysis to find bugs in the real world. In: Communica-
tions of the ACM. Association for Computing Machinery, New York, NY, USA, vol 53, pp 66–75.
https:// doi. org/ 10. 1145/ 16463 53. 16463 74

 15. Francois F, Bruno L (2016) VERROU: a CESTAC evaluation without recompilation. In: 17th Inter-
national Symposium on Scientific Computing, Computer Arithmetic and Verified Numerics (SCAN
2016)

 16. Alex S, Pavel P, Sorin L, Zachary T (2018) Finding root causes of floating point error. In: Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI 2018). Association for Computing Machinery, New York, NY, USA, vol 53, pp
256–269. https:// doi. org/ 10. 1145/ 31923 66. 31924 11

 17. Eric G, Sylvie P (2011) Static Analysis of Finite Precision Computations. In: Proceeding of the 12th
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI
2011). Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, vol 6538, pp 232–247.
https:// doi. org/ 10. 1007/ 978-3- 642- 18275-4_ 17

 18. Hui G, Cindy R (2020) Efficient generation of error-inducing floating-point inputs via symbolic exe-
cution. In: Proceedings of the ACM/IEEE 42th International Conference on Software Engineering
(ICSE 2020). Association for Computing Machinery, New York, NY, USA. pp 1261–1272. https://
doi. org/ 10. 1145/ 33778 11. 33803 59

 19. Pavel P, Alex S, James R, Zachary T (2015) Automatically improving accuracy for floating point
expressions. In: Proceeding of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2015). Association for Computing Machinery, New York, NY,
USA, vol 50, pp 1–11. https:// doi. org/ 10. 1145/ 27379 24. 27379 59

 20. Daming Z, Yuchen G, Yuanfeng S, Mingzhe W, Yingfei X, Zhendong S (2023) Oracle-free repair
synthesis for floating-point programs. In: Proceeding of the ACM on Programming Languages, vol
6, Issue OOPSLA2, Article No.: 159, pp 957–985. https:// doi. org/ 10. 1145/ 35633 22

 21. Anastasiia I, Eva D (2017) On sound relative error bounds for floating-point arithmetic. In: Pro-
ceeding of the 17th Conference on Formal Methods in computer-Aided Design (FMCAD 2017).
FMCAD Inc, Austin, Texas. pp 15–22. https:// doi. org/ 10. 23919/ FMCAD. 2017. 81022 36

 22. Patrick C, Radhia C (2014) Abstract interpretation: past, present and future. In: Proceeding of the
Joint Meeting of the Twenty-third EACSL Annual Conference on Computer Science Logic and the
Twenty-ninth Annual ACM/IEEE Symposium on Logic in Computer Science (CSL-LICS 2014).
Association for Computing Machinery, New York, NY, USA. pp 1–10. https:// doi. org/ 10. 1145/
26030 88. 26031 65

https://doi.org/10.1145/2692916.2555265
https://doi.org/10.1007/s11227-018-2552-x
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/3290369
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/2429069.2429133
https://doi.org/10.1145/2254064.2254118
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1145/3377811.3380359
https://doi.org/10.1145/3377811.3380359
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/3563322
https://doi.org/10.23919/FMCAD.2017.8102236
https://doi.org/10.1145/2603088.2603165
https://doi.org/10.1145/2603088.2603165

 Z. Zhang et al.

1 3

 23. Hickey T, Ju Q, Van EMH (2001) Interval arithmetic: from principles to implementation. J ACM
48:1038–1068. https:// doi. org/ 10. 1145/ 502102. 502106

 24. Luiz H, Jorge S (2004) Affine arithmetic: concepts and applications. Numer Algorithms 37:147–
158. https:// doi. org/ 10. 1023/B: NUMA. 00000 49462. 70970. b6

 25. Wonyeol L, Rahul S, Alex A (2016) Verifying bit-manipulations of floating-point. In: Proceed-
ing of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI 2016). Association for Computing Machinery, New York, NY, USA, vol 51, pp 70–84.
https:// doi. org/ 10. 1145/ 29080 80. 29081 07

 26. Roberto B, Emilio C, Daniele C, Camil D, Irene F (2018) A survey of symbolic execution tech-
niques. ACM Comput Surv 51:1–39. https:// doi. org/ 10. 1145/ 31826 57

 27. Stella S, Alberto B, Omar I, Mirco T (2022) Tight error analysis in fixed-point arithmetic. Form Asp
Comput 34:1–32. https:// doi. org/ 10. 1145/ 35240 51

 28. Alexey S, Marek S, Ian B, Charles J, Zvonimir R, Ganesh G (2018) Rigorous estimation of floating-
point round-off errors with symbolic taylor expansions. In: ACM Transactions on Programming
Languages and Systems. Association for Computing Machinery, New York, NY, USA, vol 41, pp
1–39. https:// doi. org/ 10. 1145/ 32307 33

 29. Hao J, Xu J, Guo S (2022) Design of variable precision transcendental function automatic generator.
J Supercomput 78:2196–2218. https:// doi. org/ 10. 1007/ s11227- 021- 03937-8

 30. Zhou B, YongZhong H, Jinchen X, ShaoZhong G, Hongyuan Q (2019) Memory latency optimi-
zations for the elementary functions on the Sunway architecture. J Supercomput 75:3917–3944.
https:// doi. org/ 10. 1007/ s11227- 018- 02741-1

 31. Laurent F, Guillaume H, Vincent L, Patrick P, Paul Z (2007) MPFR: a multiple-precision binary
floating-point library with correct rounding. ACM Trans Math Softw 33:13. https:// doi. org/ 10. 1145/
12364 63. 12364 68

 32. Yuhao Z, Luyao R, Liqian C, Yingfei X, Shing-chi C, Tan X (2020) Detecting numerical bugs in
neural network architectures. In: Proceeding of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2020). Association for Computing Machinery, New York, NY, USA. pp 826–837. https:// doi. org/ 10.
1145/ 33680 89. 34097 20

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Zuoyan Zhang1 · Jinchen Xu1 · Jiangwei Hao1 · Yang Qu1 · Haotian He1 ·
Bei Zhou1

 * Bei Zhou
 13653970052@163.com

 Zuoyan Zhang
 zhangzuoyan523@163.com

 Jinchen Xu
 atao728208@126.com

 Jiangwei Hao
 haojiangweitimo@foxmail.com

 Yang Qu
 qy19971130@163.com

https://doi.org/10.1145/502102.502106
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1145/2908080.2908107
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3524051
https://doi.org/10.1145/3230733
https://doi.org/10.1007/s11227-021-03937-8
https://doi.org/10.1007/s11227-018-02741-1
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3368089.3409720

1 3

Hierarchical search algorithm for error detection in…

 Haotian He
 m18503880251@163.com

1 Information Engineering University, No. 62 Science Anenue, High-Tech Zone,
Zhengzhou 450001, Henan, China

	Hierarchical search algorithm for error detection in floating-point arithmetic expressions
	Abstract
	1 Introduction
	2 Related work
	3 Background knowledge
	3.1 Floating-point representation
	3.2 Error measurement standard
	3.3 Significant error

	4 HSED framework
	5 HSED implementation
	5.1 Generating high-precision version code automatically
	5.2 Preprocessing
	5.3 Hierarchical search algorithm

	6 Experimental results
	6.1 Test case
	6.2 Precision results and analysis
	6.2.1 Comparison with Herbie and Herbie+
	6.2.2 Comparison with S3FP
	6.2.3 Comparison with ATOMU

	6.3 Performance results and analysis

	7 Conclusion and future work
	References

