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The MPFR and CR-LIBM math libraries are frequently utilized due to their ability to generate

correctly rounded results for all double-precision inputs. However, it is worth noting that MPFR

has a slower average performance, while CR-LIBM achieves correct rounding over two itera-

tions, rendering it less stable. In addition, CR-LIBM has a poor performance in handling the
worst-case of correct rounding. This paper implements a correctly rounded elementary function

library called SCR-LIBM in double-precision, which is stable and e±cient. Our key idea is to

divide subdomains and use the low-degree Taylor polynomial to approximate the elementary
function in each subdomain. We simulate the high-precision representation based on the

double–double data format, and use the error-free transformation and Double-double algorithm

to control the error in the process of polynomial approximation and output compensation. Our

approach ensures that the elementary function is correctly rounded, without the need for
redundant iterations. The experimental evaluation shows that the average performance of

elementary functions implemented in SCR-LIBM is 8.534 times faster than that of MPFR, and

2.492 times faster than that of CR-LIBM when dealing with the worst-case of correct rounding.

What's more, our SCR-LIBM is more stable than CR-LIBM.

Keywords: Elementary function; correct rounding; Taylor polynomial; Double-double algorithm.

1. Introduction

High performance computing (HPC) plays a crucial role in contemporary scienti¯c

and technological advancements. It is widely used in various domains such as
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high-energy physics research, aerospace aircraft design, national economic

forecasting and large-scale precision computing. The elementary function library [1]

is an essential component of HPC software, providing implementations of elementary

functions (e.g. expðxÞ, sinðxÞ, logðxÞ). According to the most recent IEEE-754

standard [2], elementary function libraries are advised to produce the correctly

rounded value because the °oating-point format is frequently used to approximate

real numbers. Common used libraries are Intel's MKL [3], AMD's libm [4], Gnu's

Glibc [5] and so on. These mainstream math libraries are mainly used for single

and double precision, but most of them do not produce correctly rounded results for

all inputs.

The correct rounding [6, 7] of an elementary function is de¯ned as computing the

value of the elementary function with the input and then rounding to the only result

in the target representation according to the rounding rule. Developing a correctly

rounded library is a challenging task because even a minor error in the computation

of an elementary function can lead to an inaccurate result. According to [8], correct

rounding has many bene¯ts. First, it can preserve some mathematical properties of

the function by minimizing the error, such as symmetry and monotonicity;

second, correctly rounded elementary functions with the same °oating-point format

will always produce the same result, which is useful for software porting; third,

it allows the accuracy of °oating-point algorithms to be veri¯ed in standardized

systems.

Certain critical industries, such as aerospace and automatic control, require the

elementary function to provide high accuracy and fast execution performance. While

the current double-precision elementary function libraries are capable of achieving

correct rounding, their performance is deemed unsatisfactory. For instance, MPFR is

poor in terms of average performance. Hence, Lef�evre proposed algorithms to opti-

mize the MPFR library [9]. In addition, IBM's MathLib [10] and CR-LIBM [11] are

slow at handling the worst-case [12] of correct rounding. What's more, the perfor-

mance of CR-LIBM is highly variable in some cases.

MPFR [13] is currently the dominant multi-precision package, using arbitrary

multi-precision to achieve correct rounding. Experimental tests show that some el-

ementary functions of MPFR cost 10 of 1000 of cycles. The average performance of

MPFR is poor because it uses arbitrary precision, so it cannot take advantage of the

°oating-point performance o®ered by processors. MathLib provides correctly

rounded elementary functions for double precision. However, Daramy [11] denotes

that worst-case execution time of MathLib can increase to 20,000 times the normal

execution time. This signi¯cant increase poses challenges in utilizing MathLib for

real-time applications, CR-LIBM [11], a correctly rounded library in double-preci-

sion, developed by Daramy et al. CR-LIBM provides correct rounding by two

iterations. The ¯rst iteration, which is called as Quick phase, provides 60–80 bits of

accuracy (i.e. depending on the function) for processing most of the inputs. The

second iteration, which is called as accurate phase, is dedicated to the worst-case of

correct rounding. Although the ¯rst iteration of CR-LIBM is fast, it has poor
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performance against the worst-case of correct rounding. The average worst-case

execution performance of CR-LIBM is as high as 3200 cycles. In scenarios where CR-

LIBM handles many inputs in close proximity, a notable circumstance arises: Certain

inputs require only the ¯rst iteration for correct rounding, while others necessitate a

second iteration for correct rounding. The situation described above leads to large

°uctuations in the performance, with the sinðxÞ function of the CR-LIBM °uctuating

up to 10 times in two iterations.

Therefore, it is di±cult for the above elementary function libraries to meet the

needs of the high real-time, fast interaction ¯eld. For example, real-time aerospace

system [14] has strict limits on the average response time and worst-case execution

time of each component. As an elementary function library providing computational

support, its performance [15, 16] and stability directly a®ect the safety of the

actual °ight.

The main contributions of this paper are the following. First, we implement an

elementary function library called SCR-LIBM in double-precision, which is e±cient

and stable. Second, we present an e±cient algorithm to approximate elementary

function. Our algorithm solves the problem that traditional elementary function

libraries need to use iterations to achieve correct rounding in the worst-case, and

reduces the upper limit of execution time in the worst-case. Without entering re-

dundant iterations, our algorithm e®ectively avoids large °uctuations in the per-

formance. Third, we use the multi-part mode for error control, which can achieve

high accuracy and relatively good performance, to solve the problem that the average

performance of elementary function library is poor.

The outline of this paper is as follows. In Sec. 2, we introduce the basics of

°oating-point representation, the implementation method of elementary functions,

and error control methods for °oating-point computations. In Sec. 3, we introduce

the design theory of correctly rounded elementary functions. Two general phases are

taken in order to correctly round the elementary function. In Sec. 4, we explain how

to implement correctly rounded elementary functions in details. Specially, we pro-

pose a new polynomial approximation algorithm that divides subdomains and uses

low-degree Taylor polynomial to approximate the elementary function in each

subdomain. What's more, we present how to combine error-free transformation and

Double-double algorithm to get the accurate result during polynomial approxima-

tion and output compensation. In Sec. 5, numerical experiments showing the accu-

racy and the performance of our SCR-LIBM; ¯nally, this paper makes the conclusion

and expectation in Sec. 6.

2. Background

We provide background on the °oating-point representation, implementation

methods of elementary functions, and error control methods for °oating-point

computations.

SCR-LIBM: A Correctly Rounded Elementary Function Library in Double-Precision 677
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2.1. The °oating-point representation

The IEEE-754 (2008) standard [2] de¯nes the formats of binary and decimal °oating-

point numbers, denormal values, some special values and the behavior of the four

basic operators. Floating-point numbers are usually encoded in a scienti¯c notation

format in computers. The IEEE-754 (2008) standard speci¯es the encoding format of

°oating-point as a normalized binary scienti¯c notation. The binary °oating-point

number is stored in the format of a symbolic numerical representation, which is

divided into three parts from high to low in the computer: Sign bit, exponent bits and

fraction bits. Overall, the IEEE-754 (2008) standard speci¯es several formats for

binary °oating-point numbers, as shown in Fig. 1, with single and double precision

being the most commonly used data types.

Real values must be rounded to the proper °oating-point number in accordance

with the rounding mode when they cannot be accurately represented. In total, the

IEEE-754 (2008) standard speci¯es four rounding modes: Round toward positive

in¯nity, round toward negative in¯nity, round toward zero and round to the nearest.

Commonly, results are rounded to the nearest °oating-point value using the \round

to the nearest" mode. If two values are equally close, the even value is taken. In this

paper, we assume that all the °oating-point computations are performed in double-

precision, with the \round to the nearest" mode.

2.2. Methods for the implementation of elementary functions

Currently, the table-lookup algorithm [17], the polynomial approximation method

[18, 19], and the \reduction–approximation–reconstruction" algorithm are the

methods used to implement elementary functions. Although the table-lookup algo-

rithm is quite straightforward, it cannot be extended to increase precision. While the

polynomial approximation method o®ers great accuracy, it is not appropriate for

calculations involving huge approximation intervals.

sign

sign

31

63

1 8 23

1 11 52

32bit

64bit

exponent fraction

exponent fraction

02230

05162

1 8 23

1 11 52

32bit

64bit

exponent fraction

exponent fraction

02230

05162

sign

sign

31

63

11 88 2233

11 1111 5522

1 8 23

1 11 52

32bit

64bit

exponent fraction

exponent fraction

02230

05162

Fig. 1. Float and double °oating-point format.
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As Lim shows, using the \reduction–approximation–reconstruction" algorithm to

implement functions has good e®ects [20]. Hence, our approach is based on the

\reduction–approximation–reconstruction" algorithm. Typically, the \reduction–
approximation–reconstruction" algorithm is composed of three parts: Range re-

duction, polynomial approximation and output compensation. According to the

properties of the function, the mathematical rule, and the character of the °oating

point, range reduction is the process of converting inputs in the de¯ned interval into

a domain that is suitable for approximation. For example, the periodicity and

symmetry of sinðxÞ can be used to transform the de¯ned interval to ½0; �2�. After range

reduction, one can approximate the value of the elementary function by choosing

suitable approximation polynomials, such as the Taylor polynomial. The higher the

degree of the polynomial, the more accurate the approximation will be, but it will

also consume more computing resources. Finally, in order to obtain the ¯nal function

value, output compensation incorporates previously computed intermediate values

of range reduction and polynomial approximation. In addition to the above three

steps, it is generally necessary to deal with the special cases of the function in

advance. The special cases refer to the inputs that may cause errors and exceptions in

the computation of the function.

2.3. Error control method for °oating-point computations

Floating-point calculation errors can be divided into various types (e.g. represen-

tation error, rounding error). The most direct and reliable method of eliminating

°oating-point computation errors is to increase working precision. Increasing

working precision can primarily be accomplished by high precision simulation of

compiler, hardware and software algorithms. This paper describes how to simulate

high precision using the software algorithm.

Software algorithms for high precision simulation can be divided into two cate-

gories: Multi-digit mode and multiple-component mode. The principle behind multi-

digit mode is to use arrays of integers or °oating-point numbers to represent

mantissa, anduse separate integer or °oating-point number to represent exponent [21].

A more representative tool in multi-digital mode is MPFR [13]. The performance of

MPFR is poor because the multi-digit mode speci¯es arbitrary precision bits. This

prevents the arithmetic operation fromutilizing the performance o®ered by the current

processor. As for the multipart mode, it uses several standard °oating-point numbers

to represent the °oating-point number with higher precision. Each mantissa bit and

exponent bit in a °oating-point number is unique. Several such °oating-point numbers

are added together to produce a °oating-point number with higher precision.

The expressible precision can only be an integer multiple of the precision of the com-

ponent °oating-point number, such as double–double [22] and Triple-double [23]. In

[24], Graillat et al. have introduced the error-free transformation and compensated

algorithms, which are the basis of the multiple-component mode. In addition, Grail-

lat et al. have developed accurate compensated algorithms [25] by making use of

SCR-LIBM: A Correctly Rounded Elementary Function Library in Double-Precision 679
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the error-free transformation. We recall the error-free transformation and the

Double-double algorithm.

2.3.1. Error-free transformation

The error-free transformation is de¯ned as in De¯nition 1.

De¯nition 1. If � 2 fþ;�;�g, let a and b be two °oating-point numbers such that

a; b 2 F , and x ¼ flða � bÞ 2 F , when there is no over°ow or under°ow and the

rounding mode is round-to-even. Then

a � b ¼ xþ y:

The x represents the °oating-point number closest to the result of the compu-

tation. The y represents an exact rounding error. The process of converting

the °oating-point pair ða; bÞ into the °oating-point pair ðx; yÞ is the error-free

transformation.

FastTwoSum [26] and TwoSum are the two primary categories of error-free

transformation addition. TwoSum does not restrict the size of the two added °oat-

ing-point numbers, whereas FastTwoSum does. Hence, TwoSum is the optimal error-

free transformation addition algorithm for summing two °oating-point numbers.

The most widely used algorithm for the product of two °oating-point numbers is

called TwoProd. TwoProd needs to use the Split algorithm to split the °oating-point

number into two °oating-point numbers [26].

2.3.2. Double-double algorithm

The double–double [22] data format is often used for °oating-point computation that

requires twice the working precision. The following is the speci¯c de¯nition of the

double–double data format.

De¯nition 2. Let xh and xl be two double-precision °oating-point numbers, and x

is the exact sum of xh and xl without rounding. The relationship between x, xh and xl

can be expressed as

x ¼ xh þ xl:

When adding two double–double numbers, multiplying two double–double
numbers, or dividing two double–double numbers, Double-double algorithms are

used to get results that are double–double. Compared to the error-free transforma-

tion, Double-double algorithm is more accurate but has a higher performance

overhead.

Summary. Under the guidelines of the IEEE-754 standard, implementing an

elementary function for double precision with the \reduction–approximation–
reconstruction" algorithm may su®er from °oating-point calculation errors. To

address the aforementioned issue, a dependable approach is to utilize software

algorithms for high precision simulation. This method generally employs

680 Y. Qu et al.
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error-free transformation and the Double-double algorithm to achieve a high level

of accuracy.

3. The Framework of Correctly Rounded Elementary

Functions in Double-Precision

Our SCR-LIBM uses two phases, based on and improved upon the traditional

\reduction–approximation–reconstruction" algorithm, to implement correctly

rounded elementary functions in double-precision. The ¯rst phase is the \Design of

elementary function algorithm based on high precision". The second phase is the

\Error control for °oating-point computations of double precision". Figure 2 pro-

vides a pictorial overview of our method. Take the expðxÞ function as an example.

First, we ¯lter special cases of the expðxÞ function. Subsequently, range reduction is

conducted in order to reduce the range of function arguments, hence facilitating the

process of approximating the function. Next, we can obtain the approximation

polynomial through the phase \Design of elementary function algorithm based on

high precision". Once the approximation polynomial has been determined, correctly

rounded elementary functions are implemented in the \Error control for °oating-

point computations of double precision" phase. The speci¯c functions of these two

phases will be introduced individually as follows.

. Design of elementary function algorithm based on high precision: First, we ana-

lyze the bene¯ts and drawbacks of the Taylor polynomial, and then we propose a

new approximation method that divides subdomains and uses the low-degree

Taylor polynomial to approximate the function in the subdomains. Once

the method of polynomial approximation has been established, it becomes

imperative to ascertain the size of the subdomain and the degree of the

Taylor polynomial. Polynomial calculation is performed using the high-precision

library MPFR to prevent errors caused by °oating-point computation. The de-

termination of the size of a subdomain and the degree of the Taylor polynomial is

governed by a circular condition, which ensures that the elementary functions

achieve correct rounding. The ¯nal result of the ¯rst step is an approximation

polynomial.

. Error control for °oating-point computations of double precision: The approxi-

mation polynomial derived from phase 1 is utilized to approximate the function,

ensuring correct rounding for elementary functions. However, the process of

polynomial computations is done based on MPFR, resulting in poor performance

of elementary functions. To solve this problem, we simulate the high-precision

representation based on the double–double data format, and combine the error-

free transformation and Double-double algorithm to control the error in the pro-

cess of polynomial approximation and output compensation. The above method

guarantees correct rounding of the elementary function while simultaneously

enhancing function performance signi¯cantly.

SCR-LIBM: A Correctly Rounded Elementary Function Library in Double-Precision 681
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4. The Implementation of Correctly Rounded Elementary

Functions in Double-Precision

In this section, the process of correctly rounding elementary functions of SCR-LIBM

is presented in detail. Based on the \reduction–approximation–reconstruction" al-

gorithm, we ¯rst ¯lter special cases. Then, to reduce the input domain of the ele-

mentary function, we perform range reduction. After the above two steps, we

propose a new polynomial approximation algorithm that dividing subdomains and

using low-degree Taylor polynomial to approximate the elementary function in each

subdomain. Finally, a combination of error-free transformation and Double-double

algorithm is used for polynomial approximation and output compensation to get the

correct rounding result.

4.1. Filter special cases

We ¯rst ¯lter special cases of elementary functions in our SCR-LIBM, which can help

avoid exceptions or errors and improve the accuracy and reliability of the calculated

results. These special cases are speci¯c to each elementary function and target re-

presentation. However, we can divide special cases into two main types [20]. The ¯rst

type consists of inputs that produce unde¯ned results like NaN or NaR. In addition,

inputs that produce �1 can also be classi¯ed into the ¯rst type. For instance,

fðxÞ ¼ 1 if x ¼ 1 for the expðxÞ function. The second type is composed of inputs

that produce some special results when approximating fðxÞ. These results are

under°ow, over°ow, saturation error, or the same rounded result produced by ranges

of inputs. For instance, all double inputs belong to [707, 1) produce results that

round to 1 (over°ow) when approximating the expðxÞ function. Therefore, it is

necessary to ¯lter out the special numbers in the input ¯eld according to the

mathematical properties of the function.

4.2. Range reduction

Range reduction is the process of transforming inputs in the de¯ned interval into a

domain that is suitable for approximation according to the properties of the function,

the mathematical law, and the character of the °oating point. For instance, the

expðxÞ function in this paper is reduced three times, so that fewer subdomains can be

divided in the process of polynomial approximation. For other functions, the times of

range reduction are related to the mathematical properties of the function itself. So

far, the 10 functions we have implemented only require range reduction three times

at most. Taking the expðxÞ function in our SCR-LIBM as an example, we show how

to perform range reduction.

As shown in Fig. 3, this paper reduces the input domain of expðxÞ function from

½�707; 707� into ½4; 4þ lnð2Þ
64 � by cubic reduction. The speci¯c steps are as follows.
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According to the properties of expðxÞ function, Eq. (1) is used to rewrite expðxÞ
function equitably.

expðxÞ ¼ expðx0 þ n � lnð2ÞÞ: ð1Þ

Proof. We have introduced two unknowns, x0 and n. We let x ¼ x0 þ n � lnð2Þ,
then we can get expðxÞ ¼ expðx0 þ n � lnð2ÞÞ.

In the above, x0 and n can be expressed by Eq. (2). n is the amount of lnð2Þ in x,

rounded down.

n ¼ x

lnð2Þ
� �

; x0 ¼ x� n � lnð2Þ: ð2Þ

According to the property of the exponential function, Eq. (1) is further rewritten in

the following equation:

expðxÞ ¼ expðn � lnð2ÞÞ � expðx0Þ ¼ 2n � expðx0Þ: ð3Þ

Proof. According to the equation expðaþ bÞ ¼ expðaÞ � expðbÞ, we can get

expðxÞ ¼ expðx0 þ n � lnð2ÞÞ ¼ expðn � lnð2ÞÞ � expðx0Þ. Further, according to the

equation expðx � lnðkÞÞ ¼ kx, we can get expðn � lnð2ÞÞ ¼ 2n. Finally, we can get

expðxÞ ¼ expðn � lnð2ÞÞ � expðx0Þ ¼ 2n � expðx0Þ.
By the ¯rst range reduction, we get the reduced argument x0 from x, and

x0 2 ½0; lnð2ÞÞ. To further reduce the range of function parameters, the second range

reduction is performed as follows: By inserting several nodes into ½0; lnð2ÞÞ, we divide
the interval into several smaller approximation intervals. For example, we insert 63

nodes into ½0; lnð2ÞÞ and we can get 64 smaller approximation intervals. By doing

these, we rewrite x0 as follows:

x0 ¼
j

64
� lnð2Þ þ x 0: ð4Þ

-707 7070-707 7070

0 ln(2)-707 7070 ln(2)-707 707

0 ln(2)/64-707 7070 ln(2)/64-707 707

4+ln(2)/644-707 7070 4+ln(2)/644-707 7070

Fig. 3. The process of range reduction.
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j is the value of the set f0; 1; 2; 3; . . . ; 63g and the reduced argument x 0 2 ½0; lnð2Þ64 �.
According to the above transformation, expðxÞ function is rewritten as follows:

expðxÞ ¼ 2n � 2 j
64 � expðx 0Þ: ð5Þ

Proof. Because expðxÞ ¼ 2n � expðx0Þ, we can get expðxÞ ¼ 2n � expð j
64 � lnð2Þþ

x 0Þ. According to expðaþ bÞ ¼ expðaÞ � expðbÞ, we can get exp j
64 � lnð2Þ þ x 0� � ¼

exp j
64 � lnð2Þ
� � � expðx 0Þ. Further, according to the equation expðx � lnðkÞÞ ¼ kx, we

can get expð j
64 � lnð2ÞÞ ¼ 2

j
64 . Finally, we can get expðxÞ ¼ 2n � 2 j

64� expðx 0Þ.
By the second range reduction, we get the reduced argument x 0 from x0, and

x 0 2 ½0; lnð2Þ64 �. After quadratic range reduction, there are still a large number of

°oating-point numbers in the reduced interval ½0; lnð2Þ64 �. In order to split fewer sub-

domains in the smaller reduced interval, the third range reduction is performed as

follows: Using the algorithm of the exponential function, expðxÞ function is rewritten

according to the following equation:

expðxÞ ¼ 2n � 2 j
64 � expð�4:0Þ � expð4:0þ x 0Þ: ð6Þ

Proof. According to the equation expðaþ bÞ ¼ expðaÞ � expðbÞ, we can get

expðx 0Þ ¼ expð�4:0þ 4:0þ x 0Þ ¼ expð�4:0Þ � expð4:0þ x 0Þ. Finally, we can get

expðxÞ ¼ 2n � 2 j
64 � expð�4:0Þ � expð4:0þ x 0Þ.

Now let t ¼ 4:0þ x 0, and t 2 ½4:0; 4:0þ lnð2Þ
64 �. Through the transformation of

Eq. (6), the ¯nal expðxÞ function is shown in the following equation:

expðxÞ ¼ expð�4:0Þ � 2n � 2 j
64 � expðtÞ: ð7Þ

By the third range reduction, we get the reduced argument t from x 0, and t 2
½4:0; 4:0þ lnð2Þ

64 �. In addition to expðtÞ in Eq. (7), the other parameters such as expð
�4:0Þ; 2n; 2

j
64 can be stored in the table beforehand and read from the table when

entering the calculation.

4.3. The elementary function algorithm based on high precision

After range reduction, we need to use appropriate methods to approximate the

function. The common method is to use approximation polynomials. Unlike other

approximation methods, the approximation of a function by a polynomial can be

done e±ciently using only addition, subtraction and multiplication operations. In

this section, we propose a new polynomial approximation algorithm that dividing

subdomains and using the low-degree Taylor polynomial to approximate function in

the subdomain.
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4.3.1. Taylor expansion in divided subdomains

When the Taylor polynomial is utilized to approximate the function, the generation

of the polynomial is simple. Furthermore, the error of the polynomial approximation

has an upper bound. Hence, Taylor polynomial is often used for the approximation of

functions. Currently, the mainstream math library typically reduces the parameters

of the elementary function to near 0 and takes 0 as the pivot point, approximating

the function with Maclaurin's series. However, as the input gets further away from

0, the error of the Taylor polynomial increases signi¯cantly. The only way to

control the error is by raising the degree of the Taylor polynomial, though this action

adversely impacts the e±ciency of the elementary function.

To solve the aforementioned issues, we propose the following approach to ap-

proximate the elementary function. First, Taylor polynomial is used for the ap-

proximation of the elementary function. Second, a new expansion method is used to

avoid the disadvantage of using 0 as the pivot point. Further, a number of small

subdomains are constructed with di®erent locations. In each subdomain, the start-

ing-point of the subdomain is used as the Taylor expansion point. We use low-degree

Taylor polynomial to approximate the elementary function in each subdomain. If the

subdomain is su±ciently small, the elementary function can be approximated with

less error and using only a few degrees.

As shown in Fig. 4, it is the image of using low-degree Taylor polynomial to

approximate the expðxÞ function in each subdomain. To be speci¯c, each point of the

same color in the image forms a subdomain and the length of each subdomain is

0.5 cm. From the ¯gure we can see that there is a good approximation e®ect when the

Taylor polynomial of degree 2 is used for the approximation of the elementary

function.

-2 -1 0 1 2 3 4
-2 < x < 4

0

10

20

30

40

50

60

E
xp

 a
nd

 P
ol

yn
om

ia
l V

al
ue

s

Line Plot of Exp and Polynomial Between -2 and 4

y = exp(x)
 polynomial points

Fig. 4. The e®ect of polynomial approximation in each splitted subdomain.
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4.3.2. Determining the approximation polynomial by MPFR

When actually approximating the elementary function in double-precision, it is

imperative to determine the size of each subdomain and the degree of the Taylor

polynomial. Using such an approximation polynomial, the elementary function can

be correctly rounded. However, °oating-point computations such as addition, sub-

traction, multiplication and division will introduce errors during the process of

verifying whether the chosen approximation polynomial can achieve correct round-

ing. This will ultimately impact the veri¯cation results. Therefore, as shown in Fig. 5,

we set 128 precision bits of the high-precision library MPFR as the veri¯cation

environment. In addition, we replaces °oating-point computations with the corre-

sponding algorithms of MPFR to prevent errors during polynomial computation,

enabling us to focus solely on the errors of the approximation polynomial.

Equation (8) used by the Taylor polynomial to approximate the elementary

function in each subdomain can be expressed as follows:

fðxÞ ¼ fðaÞ þ f 0ðaÞ
1!

ðx� aÞ þ f 00ðaÞ
2!

ðx� aÞ2 þ f 000ðaÞ
3!

ðx� aÞ3 þ . . . ; ð8Þ

The more ¯nely the subdomain is divided, the more precise the approximation result

yielded by the Taylor polynomial, and the fewer degrees to which the Taylor poly-

nomial needs to be expanded. But when the subdomain is too small, it will bring a lot

of redundant calculations. As shown in Eq. (8), we must recalculate the function

value, ¯rst derivative, second derivative and other values of the pivot point a when a

subdomain is divided. The degree of derivation depends on the degree of Taylor

polynomial. Therefore, it is necessary to choose a reasonable subdomain size and to

minimize the degree of Taylor polynomial to reduce the algorithm overhead. The

process of determining degrees of Taylor polynomial and the size of each subdomain

is shown in Fig. 6.

Taking the log2ðxÞ function in our SCR-LIBM as an example, we show how to

determine the speci¯c approximation polynomial. In this paper, the initial size of

each subdomain is taken to be the arrangement distance of 229 double-precision

°oating-point numbers. In each subdomain, we preliminary use Taylor polynomial of

degree 2 to approximate the log2ðxÞ function. Because of the large number of

+ - *

64bit

mpfr
_add

mpfr
_sub

mpfr
_mul

128bit

/ mpfr
_divf(x)

mpfr
_func+ - *

64bit

mpfr
_add

mpfr
_sub

mpfr
_mul

128bit

/ mpfr
_divf(x)

mpfr
_func

Fig. 5. MPFR replaces °oating-point computations.
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double-precision °oating-point numbers, it is not practical to check whether the ele-

mentary function can be correctly rounded under each input. Hence, we need to sample

a portion of inputs. Our practice is to select representative intervals of the function.

Further, we check whether the approximation polynomial can realize the correct

rounding of the elementary function in the selected intervals. According to the nature

of the log2ðxÞ function, we select four representative intervals in the commonly used

interval ½0:1; 10000:0� that provided by Intel. The speci¯c intervals are:

(1) With 0.1 as the starting-point, the interval where °oating-point numbers become

larger.

(2) With 10000.0 as the starting-point, the interval where °oating-point numbers

become smaller.

(3) With 1 as the starting-point, the interval where °oating-point numbers become

larger.

(4) With 1 as the starting-point, the interval where °oating-point numbers become

smaller.

The ¯rst interval represents the smaller part of the double-precision inputs;

The second interval represents the larger part of the double-precision inputs; In the

third and fourth intervals, the value of the log2ðxÞ function is close to 0. The

double-precision °oating-point numbers used to represent the result are dense.

Fig. 6. The process of determining the approximation polynomial.
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When the polynomial is calculated according to Eq. (8), the double-precision

input is shifted to determine the pivot point a of the corresponding subdomain. Then

we calculate some arguments of the polynomial by MPFR. These arguments are

function value, ¯rst derivative, second derivative of the pivot point a, the distance

and distance square between the input and the pivot point a. Once we have obtained

these arguments, we add them together using the MPFR to obtain the calculation

result of the polynomial. For this double precision input, we use the mpfr log2

function of MPFR to get the result as a reference value. This paper uses unit in the

last place (ULP) as a measure of error. There are various de¯nitions of ULP [27, 28],

but we use Goldberg's de¯nition here.

The calculation result of the polynomial above is compared with the reference

value, and the relative error is calculated using the following equation:

Errulp ¼ jExpressionðxÞmpfr log2 � ExpressionðxÞpolynomialj
ULPmpfr log2

: ð9Þ

ExpressionðxÞpolynomial represents the calculation result of the polynomial.

ExpressionðxÞmpfr log2 represents the reference value. Finally, ULPmpfr log2 represents

the error of the result calculated by MPFR. If Errulp is small than 0.5, we can deem

that the elementary function can achieve correct rounding under this input. Fol-

lowing the aforementioned process, double-precision inputs are veri¯ed in parallel in

four representative intervals. If there is the input whose Errulp is greater than 0.5, it

shows that the elementary function cannot achieve correct rounding. Therefore, in

order to reduce the error in approximating the function, it is necessary to either

decrease the subdomain size or increase the degree of the Taylor polynomial. It is

preferable to reduce the subdomain size, as increasing the degree of the Taylor

polynomial augments the algorithm overhead. As shown in Fig. 7, we ¯rst divide an

float point 1

float point 1

float point 1 float point 2

float point 2

float point 2

229 double points

228 double points 228 double points

227 double points 227 double points 227 double points 227 double points

Fig. 7. Splitting subdomains.
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initial subdomain when we meet two adjacent single-precision °oating-point every

time. The size of each initial subdomain is the arrangement distance of 229 double-

precision °oating-point numbers. The method of reducing the subdomain size is to

split an initial subdomain into two to the power parts. For instance, we split an

initial subdomain into two subdomains, four subdomains, eight subdomains and so

on. Reducing the size of the subdomain has no e®ect on the double-precision input

that is closer to the pivot point of the subdomain. However, it can reduce the error

of the double-precision input that is farther away from the pivot point of the

subdomain.

As shown in Fig. 7, we preferentially reduce the subdomain size. If there are too

many subdomains, then we increase degrees of Taylor polynomial. In the case of

high-precision calculation based on MPFR, we determined the approximation

polynomial which can be used to achieve the correct rounding of the elementary

function by the above process. The size of each subdomain is speci¯cally determined:

The arrangement distance of 224 double-precision °oating-point numbers. The de-

gree of Taylor polynomial is determined: Three.

4.4. Error control for °oating-point computations of double precision

In the case of high-precision calculation based on MPFR, Sec. 4.3.2 determines the

approximation polynomial that can be used to achieve the correct rounding of

the elementary function. However, when actually approximating the function, the

algorithm's performance should be improved as much as possible. Frequent calls to

MPFR can result in poor performance. Therefore, it is necessary to adopt certain

error control methods to e®ectively reduce °oating-point errors in polynomial cal-

culation. The aim is to achieve the same computational e®ect as MPFR and to

improve performance. The prerequisite is that the correct rounding of elementary

functions is guaranteed.

Our method was inspired by the error control methods of °oating-point compu-

tation in Sec. 2.3. To be speci¯c, we simulate the high-precision representation based

on the double–double data format, and combine the error-free transformation and

Double-double algorithm to control the error in the process of polynomial approxi-

mation and output compensation. The following describes the speci¯c °ow of ap-

plying the error control method to achieve the correct rounding of the double-

precision elementary function.

4.4.1. Pretreatments for approximating

Taking the expðxÞ function in our SCR-LIBM as an example, we can calculate it

using Eq. (7) from Sec. 4.2. According to Eq. (7), the reduced argument

t 2 ½4:0; 4:0þ lnð2Þ
64 �. Therefore, it is only necessary to use Taylor polynomial to ap-

proximate expðtÞ within this interval. We then obtain the calculation result of the

polynomial and reconstruct the result to get the value of expðxÞ. We use the Taylor

690 Y. Qu et al.
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polynomial of degree 3 to approximate expðtÞ in each subdomain. Each subdomain

size is the arrangement distance of 224 double-precision °oating-point numbers.

Equation (10) which is used to approximate expðtÞ is shown as follows:

expðtÞ ¼ expðt0Þ þ
expðt0Þ

1
ðt� t0Þ þ

expðt0Þ
2

ðt� t0Þ2 þ
expðt0Þ

6
ðt� t0Þ3: ð10Þ

Proof. It is a Taylor polynomial of degree 3. By the equation expðtÞ ¼
expðt0Þ þ exp 0ðt0Þ

1! ðt� t0Þ þ exp 00ðt0Þ
2! ðt� t0Þ2 þ exp 000ðt0Þ

3! ðt� t0Þ3, we can get expðtÞ ¼
expðt0Þ þ expðt0Þ

1 ðt� t0Þ þ expðt0Þ
2 ðt� t0Þ2 þ expðt0Þ

6 ðt� t0Þ3.
When the polynomial is to be calculated by Eq. (10), some parameters of the

polynomial are still unknown. Hence, it is necessary to perform pre-processing

operations for approximating. We divide the pretreatments into three steps to de-

termine the unknown parameters of the polynomial.

For each double-precision input x, there will be a corresponding t after range

reduction. According to several formulas of range reduction steps, n and j are de-

termined, respectively. In the process of calculating t, error-free transformation

technology is used to ensure the accuracy of t. Getting the exact values of n, j and t is

the ¯rst step of pretreatments. Having obtained the exact value of t, we determine

the subdomain in which t falls at this time (i.e. the exact value of the pivot point t0).

In this paper, t is converted to an integer by the union. In addition, the single-

precision °oating-point numbers on either side of t are determined by the way the

integer is moved ¯rst to the left and then to the right. There are 229 double-precision

°oating-point numbers between each adjacent single-precision °oating-point num-

ber. These double-precision °oating-point numbers are divided into 32 subdomains

(i.e. 224 double-precision °oating-point numbers in each subdomain). After obtaining

the single-precision °oating-point numbers on either side of t, we should ¯gure out

which subdomain t falls in. Equation (11) which is used to ¯gure out which sub-

domain t falls in is shown as follows:

Integert � Integert�leftsingle
224

� �
: ð11Þ

Integert represents the hexadecimal integer of t. Integert�leftsingle represents the

hexadecimal integer of single-precision °oating-point number which is on the left side

of t. Once we know which subdomain t falls in, we can ¯nd the pivot point t0. Getting

the exact values of t0 is the second step of pretreatments. We should split 726,848

subdomains in the reduced interval ½4:0; 4:0þ lnð2Þ
64 �. For the reason that the size of

each subdomain is the arrangement distance of 224 double-precision °oating-point

numbers. That is, there are a total of 726,848 pivot points. According to Eq. (10), an

important parameter which is used to calculate expðtÞ is the value of expðt0Þ. It is
bene¯cial for the correct rounding of the polynomial calculation if an accurate value

of expðt0Þ can be obtained. For the expðxÞ function, there are 726,848 values of
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expðt0Þ. In this paper, we use Sollya [29], a secure °oating-point code development

tool, to generate 726,848 exact values of expðt0Þ. These results are stored into stack in

the double–double data format. The above process is the third step of the pre-

treatments before the polynomial calculation.

4.4.2. Polynomial calculation based on error control method

By pretreatments for approximating, we get exact parameters of the polynomial. Fur-

ther, we need to get the value of expðtÞ by polynomial approximation. Since the value of

expðt0Þ is known from Eq. (10), we extract the common factor expðt0Þ from Eq. (10) to

reduce calculation times. Equation (10) is rewritten as the following equation:

expðtÞ ¼ expðt0Þ � ½C0 þ C1 � CD þ C2 � C 2
D þ C3 � C 3

D�; ð12Þ
where C0 is 1.0, C1 is 1.0, C2 is 0.5, C3 is

1
6 and CD is the value of (t� t0). To further

reduce calculation times, Eq. (12) was calculated using the Horner algorithm [30].

The polynomial was deformed as follows:

expðtÞ ¼ expðt0Þ � ðC0 þ CD � ðC1 þ CD � ðC2 þ C3 � CDÞÞÞ: ð13Þ
Based on the analysis in Sec. 4.3, expðtÞ can achieve correct rounding based on the

condition that using MPFR to calculate Eq. (13). To achieve the same calculation

e®ect as MPFR, this paper uses the error control method to calculate the polynomial.

In terms of data types, to improve accuracy of representation, double–double data

format is used for key parameters. We utilize double data format for parameters that

are able to tolerate errors. Similarly, key steps are calculated using the Double-

double algorithm. Error-tolerant steps are calculated using error-free transformation

or even direct °oating-point computations. The °ow of polynomial approximation

based on error control method is shown as Fig. 8.

The ¯rst is to determine the data type used to represent di®erent polynomial

parameters. CD is ðt� t0Þ, which represents the distance between the reduced

argument t and the pivot point of the subdomain. Since CD participates in the

computation several times, we determine the data type of CD depending on the order

of computation. We calculate ðt� t0Þ using error-free transform addition. The result

is represented as two double numbers, denoted as CDh and CDl. The CD multiplied

by C3 is represented by CDh. Similarly, the CD multiplied by C2 is represented by

CDh. The CD multiplied by C1 is represented by the double–double data format.

CDh

C3

C2

P4

CDh

P3

(C1h,C1l)

(P2h,P2l)

(CDh,CDl)

(P1h,P1l)

(C0h,C0l)

(P0h,P0l) (Ph,Pl)
* + Twoprod Twosum DD_mul DD_add

CD*C3 CD*C3+C2 (CD*C3+C2)*CD (CD*C3+C2)*CD+C1
((CD*C3+C2)*CD+C1)*CD ((CD*C3+C2)*CD+C1)*CD+C0

Fig. 8. The °ow of polynomial approximation based on error control method.
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(i.e. ðCDh;CDlÞ). C2 and C3 are represented by double, while C0 and C1 are repre-

sented by double–double data format. Once we have determined the data type used

to represent di®erent polynomial parameters, we then determine whether the steps

are calculated using the Double-double algorithm or error-free transformation, or

even direct °oating-point computations. The ¯rst step calculated by the Horner [30]

algorithm is the last expansion term of the Taylor polynomial. The higher the order

of the expansion term of the polynomial, the smaller the value and the less the

in°uence on the overall result of the polynomial calculation. Hence, we determine the

degree of error control by the order of the polynomial calculation. The anterior steps

use °oating-point computations or error-free transformation. The later steps use the

Double-double algorithm to improve the accuracy of the calculation. Therefore, for

the calculation step C2 þ C3 � CD, the data type used to represent the parameter is

double. Because this calculation step is error-tolerant. It only needs to use the

multiplication and addition of °oating-point operations. For this multiplication step

ðC2 þ C3 � CDÞ � CD, the result is to be represented as double–double data format.

Therefore, the error-free transformation product algorithm is used for the calcula-

tion. Similarly, for the addition step ðC2 þ C3 � CDÞ � CD þ C1, we use the error-free

transform addition algorithm for calculation. For the last two steps of the polynomial

calculation, Double-double algorithm is used to improve the accuracy of the calcu-

lation. Calculated through the above steps, we can get the exact value of

ðC0 þ CD � ðC1 þ CD � ðC2 þ C3 � CDÞÞÞ, which we denote as ðPh;PlÞ. To get the re-

sult of expðtÞ, we need to multiply expðt0Þ by the value of ðPh;PlÞ. We will calculate

this step in the output compensation part.

The polynomial approximation is completed by the above steps. Further, we carry

out the reconstruction of the result. We rewrite Eq. (7) to form Eq. (14).

expðxÞ ¼ expð�4:0Þ � 2n � 2 j
64 � expðt0Þ � P : ð14Þ

Proof. Weuse theP to represent the result of ðC0 þ CD � ðC1 þ CD � ðC2þC3 � CDÞÞÞ.
Because expðtÞ ¼ expðt0Þ � ðC0 þ CD � ðC1 þ CD � ðC2 þ C3 � CDÞÞÞ, we can get

expðtÞ ¼ expðt0Þ � P . By Eq. (7) expðxÞ ¼ expð�4:0Þ � 2n � 2 j
64 � expðtÞ, we can get

expðxÞ ¼ expð�4:0Þ � 2n � 2 j
64 � expðt0Þ � P .

The °ow of output compensation based on error control method is shown as

Fig. 9.

(Ph,Pl)

(exp(t0)h,
exp(t0)l)

(R2h,R2l) (R1h,R1l) (R0h,R0l)
DD_mul DD_mul DD_mul

exp(x)
*

(exp(-4.0)h,
exp(-4.0)l)
(exp(-4.0)h,
exp(-4.0)l)

n2n2

exp(t0)*P *exp(t0)*P64
j

2 *exp(t0)*P64
j

2 *exp(-4.0)*exp(t0)*P64
j

2 *exp(-4.0)*exp(t0)*P64
j

2 *exp(-4.0)*exp(t0)*P64
j

n 2*2 *exp(-4.0)*exp(t0)*P64
j

n 2*2

)2,2( l
64
j

h
64
j

Fig. 9. The °ow of output compensation based on error control method.
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Here, P is the calculation result of polynomial approximation and is repre-

sented as ðPh;PlÞ. According to pretreatments for approximating in Sec. 4.4.1,

values of all expðt0Þ were calculated in advance using Sollya and stored into stack

in the double–double data format. Here, j is the value of the set f0; 1; 2; 3; . . . ; 63g,
so there are only 64 possibilities in total. Hence, the value of 2

j
64 can be accurately

calculated in advance through the high-precision library. Further, these values

are stored in the double–double data format. We can refer to the table for these

values. Similarly, the value of expð�4:0Þ can be accurately calculated in advance

through the high-precision library and stored in the double–double data format.

In the output compensation part, except for multiplying by 2n, we use Double-

double multiplication algorithm to calculate every step to ensure the accuracy of

the calculation.

5. Experimental Evaluation

We use the Taylor polynomial of degree 3 to approximate the elementary func-

tion. Each subdomain size is the arrangement distance of 224 double-precision

°oating-point numbers. We use error control method to control the error in the

process of polynomial approximation and output compensation. These ensure

that the elementary function is correctly rounded. In our SCR-LIBM, 10 ele-

mentary functions have been correctly rounded. To verify the e®ect of our SCR-

LIBM, we will select rigorous and authoritative test methods to test these 10

elementary functions.

5.1. Functions for test

Four classes of elementary functions have been realized in SCR-LIBM, including

three logarithmic functions, four trigonometric functions, two hyperbolic functions

and one exponential function. Through the connection and similarity between the

functions, SCR-LIBM can be rapidly expanded according to the 10 elementary

functions that have been realized so far. For example, the inverse hyperbolic function

is the composite function of the simple algebraic expression and the logarithmic

function. It can be realized on the basis of the existing logarithmic function in this

paper. Currently, mainstream libraries that can achieve correct rounding, such as

RLIBM [31] for single-precision °oating-point numbers and CR-LIBM for double-

precision °oating-point numbers, mostly implement elementary functions that are

more commonly used. For the above reasons, SCR-LIBM implements elementary

functions as shown in Table 1.

5.2. Experimental setup

The experimental environment used in this paper is listed in Table 2.
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5.3. The accuracy test of double-precision elementary functions

The number of double-precision °oating-point numbers is too large. For the reason,

we cannot verify that the elementary functions are rounded correctly under each

input. In order to e®ectively verify the implemented elementary function, this paper

performs a accuracy test as shown in Fig. 10.

Taking the log2ðxÞ function as an example, we select representative intervals of

the function. Further, we check whether the approximation polynomial can realize

the correct rounding of the elementary function in the selected intervals. According

to the nature of the log2ðxÞ function, we select four representative intervals in the

commonly used interval ½0:1; 10000:0� that were provided by Intel. As shown in

0.1 100001

Exhaustive 
Parallelism

Exhaustive 
Parallelism

Exhaustive 
Parallelism

Exhaustive 
Parallelism

Sample Worst-case Sample Worst-case

Fig. 10. The method of accuracy test.

Table 1. List of elementary functions.

No. Function name Function type

1 log(x) Logarithmic function

2 log2(x) Logarithmic function

3 log10(x) Logarithmic function
4 sin(x) Trigonometric function

5 cos(x) Trigonometric function

6 sinpi(x) Trigonometric function

7 cospi(x) Trigonometric function
8 sinh(x) Hyperbolic function

9 cosh(x) Hyperbolic function

10 exp(x) Exponential function

Table 2. Test environment of software and hardware.

Hardware environment

CPU Intel Xeon E5-2630 v4

Clock 2.10 GHz

Memory 64 GB
Cache sizes 64KB L1, 1024KB L2, 2816KB L3

Software environment

OS Ubuntu 20.04.5 LTS

Compiler GCC v9.4.0

GCC Optimize-options \-O3"
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Fig. 10, four representative intervals are marked with di®erent colors. The four

representative intervals are as follows:

(1) With 0.1 as the starting-point, the interval where °oating-point numbers

become larger.

(2) With 10000.0 as the starting-point, the interval where °oating-point numbers

become smaller.

(3) With 1 as the starting-point, the interval where °oating-point numbers become

larger.

(4) With 1 as the starting-point, the interval where °oating-point numbers become

smaller.

The ¯rst interval represents the smaller part of the double-precision inputs; The

second interval represents the larger part of the double-precision inputs; In the third

and fourth intervals, the value of the log2ðxÞ function is close to 0. The double-

precision °oating-point numbers used to represent the result are dense. If the result

of the calculation deviates slightly from the reference value obtained by MPFR, the

measured ULP is greater than 0.5. Hence, it is necessary to focus on veri¯cation at

third and fourth intervals.

In four representative intervals, we detect the elementary function and whether it

can achieve correct rounding under all inputs of selected intervals by parallel oper-

ation. By comparing the result of the realized elementary function with the reference

value obtained by MPFR, the relative error is calculated. If the ULP measured is

greater than 0.5, there is a double-precision input that cannot be rounded correctly.

Veri¯cation is carried out at four representative intervals. If there is no case that

the double-precision input cannot be rounded correctly, the next veri¯cation step

is taken.

The following accuracy test is an important part of our veri¯cation process. In

addition to the four representative intervals for checking correct rounding, the

remaining intervals of the log2ðxÞ function are dedicated to testing the accuracy of

the worst-case of correct rounding. In the remaining intervals of the log2ðxÞ function,
we speci¯cally collected a subset of the worst-case inputs. As CR-LIBM provides

correct rounding by two iterations and the second iteration is dedicated to the worst-

case of correct rounding. Hence, we use CR-LIBM to get some of the worst-case

inputs. The speci¯c accuracy test procedure for worst-case inputs is as follows. In the

interval without exhaustive parallel accuracy testing, a part of worst-case inputs are

evenly sampled as a test set. The size of the test set is 10,000 worst-case inputs.

Further, for these 10,000 worst-case inputs, the relative error is calculated by com-

paring the calculation results of the elementary function with the reference value

obtained by MPFR. If the measured ULP is greater than 0.5, this worst-case input

cannot be rounded correctly. These 10,000 worst-case inputs are evenly distributed

over the interval that is not exhaustively parallel accuracy tested. And worst-case is

recognized as the more di±cult error case [32] to deal with incorrect rounding.
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For these two reasons, if ULP is less than 0.5 for all 10,000 inputs, it can be further

explained that the elementary function implemented in this paper can achieve cor-

rect rounding.

According to the above overall testing process, accuracy test is performed on the

functions implemented in SCR-LIBM, CR-LIBM library [11] and Glibc library [5].

The results of the tests are shown in Table 3.

According to the test results, all 10 functions implemented in SCR-LIBM and in

CR-LIBM can be rounded correctly (i.e. the maximum ULP is less than 0.5). The test

results show that Glibc cannot achieve correct rounding (i.e. sinpiðxÞ and cospiðxÞ do
not exist in Glibc). It can be seen from the above results that the elementary function

implemented in SCR-LIBM meets the requirement of correct rounding.

5.4. Performance evaluation of double-precision

elementary function

5.4.1. Average performance evaluation

In this paper, the high-precision library MPFR and the double-precision correctly

rounded library CR-LIBM are selected as the performance comparison objects.

MPFR sets the precision bit to 128 bits to ensure that all double-precision inputs are

rounded correctly. In order to maintain the consistency of the test, the same test

interval is selected for each function. We sample 10,000 double-precision inputs and

compared performance by testing the average performance cycles. In order to min-

imize the in°uence of the external environment, a data warm-up is performed before

the function is tested (i.e. the function to be tested is called several times). The

speci¯c average performance evaluation formula is shown as follows:

avgPERF ¼ 1

n

Xn
i¼1

cyclei: ð15Þ

Table 3. The result of accuracy test.

SCR-LIBM CR-LIBM Glibc

Func Max ulp Correctly rounded Max ulp Correctly rounded Max ulp Correctly rounded

log(x) 0.49999 Y 0.49999 Y 0.50027 N
log2(x) 0.49999 Y 0.49999 Y 1.59318 N

log10(x) 0.49999 Y 0.49999 Y 1.56431 N

sin(x) 0.49999 Y 0.49999 Y 0.50388 N
cos(x) 0.49999 Y 0.49999 Y 0.50735 N

sinpi(x) 0.49999 Y 0.49999 Y N/A N/A

cospi(x) 0.49999 Y 0.49999 Y N/A N/A

sinh(x) 0.49999 Y 0.49999 Y 1.66053 N
cosh(x) 0.49999 Y 0.49999 Y 1.49974 N

exp(x) 0.49999 Y 0.49999 Y 0.99911 N
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The equation represents the sum of the performance cycles of 10,000 inputs and then

averaged, where n represents the speci¯c number of test set (i.e. in this paper is 10,000).

cyclei represents the performance cycle of per double-precision input. Using Eq. (15),

we evaluate the average performance and the test results are shown in Fig. 11.

It can be found from the test results that the performance cost of MPFR is very

large. Among these functions, the performance we measured for the log10ðxÞ func-
tion was up to 17,000 cycles. Mainly because of the characteristics of multi-digit

mode, MPFR can't e®ectively use the °oating-point power of the current processor.

Hence, this is an important reason why this paper uses the error control method

instead of MPFR for °oating-point calculation.

CR-LIBM provides correct rounding through two phases. We found that about

0.35% of double-precision inputs need to go to the second phase. What's more, it is

worth noting that cospiðxÞ function in CR-LIBM only has the second phase, so we set

its ¯rst-phase performance to 0. In conclusion, although the ¯rst phase of CR-LIBM

is fast, it has poor performance in the second phase. In addition, the performance of

the two phases is quite di®erent. The performance of CR-LIBM's sinðxÞ and cosðxÞ
functions is even more than 10 times di®erent.

The 10 elementary functions implemented in SCR-LIBM have a huge advantage

over MPFR in average performance, but are worse than CR-LIBM in average per-

formance. This is because we have fully considered various input cases, including the

worst case, when designing the correct rounding method for elementary functions.

Hence, the correct rounding of elementary function is completed with higher preci-

sion, eliminating the problem of unstable performance and large °uctuation caused

by dividing phases.

5.4.2. Performance evaluation of worst-case

Worst-case execution performance is also very important for the elementary func-

tion. It is directly related to whether the elementary function can be used in some
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Fig. 11. The test result of average performance.
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critical real-time applications, such as real-time avionics and embedded devices.

Therefore, we perform the performance test for worst-case of correct rounding. The

test set consists of 10,000 inputs that have been selected for the worst-case accuracy

test in Sec. 5.3. Speci¯cally, we select MPFR and CR-LIBM as the object of com-

parison. We calculate the average worst-case execution performance speedup of the

function implemented in SCR-LIBM relative to MPFR and CR-LIBM. The speedup

of each function of SCR-LIBM over MPFR and CR-LIBM is calculated by Eqs. (16)

and (17). For each function, MPFR cycle, CR-LIBM cycle and SCR-LIBM cycle

represent the average performance cycle when dealing with these worst-case inputs.

Speedup ¼ MPFRcycle

SCR� LIBMcycle
; ð16Þ

Speedup ¼ CR� LIBMcycle

SCR� LIBMcycle
: ð17Þ

The test results are shown in Fig. 12. Compared to CR-LIBM, the function imple-

mented in SCR-LIBM has large performance advantages in worst-case execution

performance. Speci¯cally, compared to CR-LIBM, among the 10 functions imple-

mented in SCR-LIBM, the minimum performance speedup is 1.201, the maximum is

2.954, and the average speedup is 2.492. It's worth noting that the sinpiðxÞ and

cospiðxÞ functions in CR-LIBM have the better performance compared to other

functions in CR-LIBM. This is despite the speedup of sinpiðxÞ and cospiðxÞ functions
being smaller than that of other functions, but still greater than 1. Compared to CR-

LIBM, SCR-LIBM is superior in dealing with the worst-case of correct rounding. In

comparison with MPFR, the minimum performance speedup is 5.951, the maximum

is 15.746, and the average speedup is 8.534. The maximum speedup is up to 15.746

log log2 log10 sin cos sinpi cospi sinh cosh exp
0

2

4

6

8

10

12

14

16

18

20

8.841

6.774
6.268

8.470

2.807

5.9516.328

15.746

9.704

9.806

 S
pe

ed
up

2.257
2.9322.925

1.2011.396

7.451

2.8562.9542.848

CR-LIBM/SCR-LIBM
MPFR/SCR-LIBM

2.748

Fig. 12. The test result of worst-case execution performance.
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because the log10ðxÞ in MPFR has a poor performance compared to other functions.

In conclusion, the elementary function implemented in SCR-LIBM can be better

applied to real-time applications with strict upper execution time requirements.

5.4.3. Performance stability evaluation

Overall performance stability of elementary functions is critical for some uses. Hence,

we have compared the performance stability of SCR-LIBM and CR-LIBM. The

expðxÞ function is chosen as an example to show the performance stability com-

parison. To make a fair comparison, we use the same test set. The test set consists of

10,000 inputs ranging from�707.0 to 707.0, according to the commonly used interval

provided by Intel. In addition, the test set consists of two types of inputs: A part of

worst-case inputs and a part of common inputs.

We have tested SCR-LIBM and CR-LIBM for these 10,000 inputs and obtained

the exp function performance cycles. Figure 13 presents the performance °uctuation

of SCR-LIBM and CR-LIBM. According to the test result, it turned out that our

SCR-LIBM is more stable than CR-LIBM.

First, we observe that the CR-LIBM's performance cycle trend forms two lines.

The upper line of the CR-LIBM is the performance cycle trend of dealing with the

worst-case of correct rounding. Correspondingly, the lower line shows the perfor-

mance cycle trend for common inputs. When CR-LIBM deals with continuous

inputs, its performance can °uctuate up to almost 1800 cycles as shown in Fig. 13.

Under the same input set for CR-LIBM, the performance cycle trend of our

SCR-LIBM forms only one line. This means that performance is stable whether

-800 -600 -400 -200 0 200 400 600 800
Input
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500

1000

1500
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Pe
rf

or
m
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Performance Cycles for Exp Function of SCR-LIBM and CR-LIBM

CR-LIBM
SCR-LIBM

Fig. 13. Comparison of the performance stability of SCR-LIBM and CR-LIBM.
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SCR-LIBM is dealing with worst-case or common inputs. Second, there are

some discrete points beside lines in the ¯gure. These points are the result of °uc-

tuations in the test under the in°uence of the external environment. In the experi-

ments reported on Fig. 13, the number of discrete points belonging to SCR-LIBM is

less than that of CR-LIBM. This phenomenon can indirectly re°ect the stability of

the function.

6. Conclusion and Future Work

We designed an e±cient elementary function algorithm that divides subdomains

and uses the low-degree Taylor polynomial to approximate function in the sub-

domain in this paper. Our algorithm solves the problem that traditional elementary

function libraries need to use iterations to achieve correct rounding in the worst-

case. In the process of realizing elementary functions under double precision, we

simulate the high-precision representation based on the double–double data format,

and combine the error-free transformation and Double-double algorithm to control

the error in the process of polynomial approximation and output compensation. The

test results show that the elementary functions implemented in SCR-LIBM can be

rounded correctly. The average performance of SCR-LIBM is 8.534 times faster

than MPFR. However, our average performance is worse than CR-LIBM. This is

because we have fully considered various input cases, including the worst-case, when

designing the correct rounding method for elementary functions. Aiming at the

demand scenario of real-time application, we perform the performance test for

worst-case of correct rounding. The test results show that SCR-LIBM has a huge

advantage over MPFR and CR-LIBM when dealing with the worst-case of correct

rounding. In addition, we carry out the experiment for the performance stability of

SCR-LIBM and CR-LIBM. The experiment result shows that SCR-LIBM is more

stable than CR-LIBM. Therefore, SCR-LIBM can be better applied to real-time

applications.

In the future, we plan to optimize the performance of the implemented functions

to improve the average performance. For instance, we will be looking at our hard-

ware strategy in the future to increase e±ciency, which is an excellent concept. In

addition, other elementary functions will be rapidly extended according to the ele-

mentary functions that have been realized so far. Besides, it is di±cult to prove that a

math library can provide correctly rounded results for all double-precision inputs.

Because the amount of double-precision °oating-point number is too large, it is

impossible to verify all inputs. Hence, we will pay more attention to the veri¯cation

of math libraries. We plan to extend our accuracy testing method in order to cover

more double-precision inputs.
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